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Radius R 105 mm

Insert radius ri 7 mm

Hole radius rp 10 mm

Face thickness tf 0.2 mm

Core thickness tc 20 mm

Insert height hi 17 mm

Face stiffness Ef 70.5 GPa

Core stiffness Ec 310 MPa

Core shear modulus Gc 138 MPa

Pull out load P 1000 N

Table 1: Dimensions and material properties used in the benchmarking

D =
Etfd

2

2
(2)

S =
Gcd

2

tc
(3)

In eqns. (2) and (3) E is the Young’s modulus of the face sheet, Gc is the shear stiffness of

the core material, tf is the face sheet thickness, tc is the core thickness, and d = tf + tc. The

analytical expression for the vertical deflection considers a simply supported circular sandwich

plate with a centered point load. It consists of two parts; one part describing the deflection due

to bending, eqn. (4), and one part describing the deflection due to shear, eqn. (5). A more

thorough definition of eqns. (4 - 5) can be found in [13].

wb =
P (1 − ν)

16πD

[
3 + ν

1 + ν
(R2 − r2) − 2r2ln

R

r

]
(4)

P is the point load, R is the radius of the plate, and r is the coordinate along the radial axis,

see fig 4.

ws =
P

2πS
ln

R

r
(5)

The total deflection is w = wb + ws. As can be seen from eqn. (5), the solution is singular at

r = 0. Therefore the analytical solution is only valid at a certain distance from r = 0. 4.5 mm

was used in this study.

4.2 Two dimensional axisymmetric plane FE model

The two dimensional finite element model was constructed using eight node plane elements

with capability for axisymmetric analysis, Plane82 [12]. The model was parametrized in order

to make it easier to conduct a parametric study. Boundary conditions were applied in a similar

way to what is described in the section covering boundary conditions of the module. The center
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of the plate was only allowed to move along the z-axis. In order to be able to apply boundary

conditions, the FE model was extended by 10 mm compared to the analytical model. In the

simply supported model, the extended portion of the top face sheet was restrained in the z-

direction. In order to ensure that the stress gradients and peeks were captured a model with

a very fine mesh was used. The model had 450611 degrees of freedom, and 74565 elements.

Figure 7 shows the area where the top face sheet, potting and insert meet. As can be seen from

the figure, the face sheets were modeled with 3 elements through the thickness, the potting

was modeled with 36 elements in the r-direction, and the material between the two face sheets,

i.e. insert, potting and core, were modeled with 129 elements in the z-direction. The potting

measured 3 mm in the r-direction, and the face sheet was 0.2 mm thick. The finely meshed

model did, however, not produce any significantly different results from a coarser model with

51214 degrees of freedom and 8386 elements.

�
Upper face sheet

	
Insert

�

Potting



Core

��0.2 mm

� �3.0 mm

Figure 7: Mesh density in the area where the insert, potting, core and upper face sheet meet.

4.3 3 dimensional plate FE model

The 3 dimensional finite element model was constructed using eight node layered shell el-

ements, Shell91 [12], with the capability to deform in shear. Only a quarter of a circular plate

was used, and in order to keep the model as simple as possible, there was no insert modeled at

its center. The two radial edges were given symmetry boundary conditions. Thus in-plane trans-

lation, and rotation around the edge was restrained. The circumferential edge was restrained in

the z-direction for the simply supported model.

4.4 Deflections

Figure 8 shows the predicted deflections of a simply supported sandwich plate according to

the different models used. Since the analytical model is singular at r = 0 those predictions are

only used for r ≥ 4.5mm. The analytical model, the three dimensional FE model and the devel-

oped analysis model show quite good agreement, whereas the two dimensional axisymmetric
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model predicts a somewhat lower deflection. The reason for this is believed to be that the model

is a plane 2D model not allowing for displacement in the θ-direction or rotation around the θ or

z-axis, thus generating a somewhat stiff model.

Figure 8: Predicted deflection of simply supported

sandwich plate at P = 1000N
Figure 9: Predicted shear stress distribution in core

at P = 1000N

4.5 Stress levels

Since the insert was not modeled in the three dimensional plate FE model and the shell el-

ements used did not resolve local stress gradients through the thickness of the plate, the stress

results from the high-order model were only compared with the results from the two dimen-

sional plane axisymmetric FE model. Figure 9 shows the predicted shear stress in the center

plane of the sandwich panel, with insert and potting region marked in red and green respec-

tively. Outside the potting the two models show good agreement. Within the potting there is a

certain disagreement which may be attributed to a finite element mesh that was not fine enough.

Tests with mesh refinement did however not show any significant changes in the predicted shear

stresses within the potting. The agreement between the two models is not good within the in-

sert. However, the most common modes of failure in pull out of inserts in sandwich panels are

shear failure in the core material or disbonding between the core material and face sheets or

disbonding between the potting and the face sheets [2]. Therefore the results within the insert

are assumed not to affect the prediction of the failure loads in the governing failure mechanisms.

Transverse normal, peel, stress, or tensile stress, along the upper interface is shown in figure

10. The upper interface is defined as a line at the height of the lower side of the upper face sheet

where it connects to the core material. The line also goes through the top of the potting and

the insert. The predictions from the two dimensional axisymmetric FE model and the proposed

model show good agreement along most of the interface. The area where the agreement is not

so good is within the insert. This is assumed to be because the loads are applied in different

ways in the two models. In the FE model the load is applied as a point load, whereas in the

proposed model it is applied as a distributed load spread out over the surface of the insert.
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Figure 10: predicted stress distribution in interface

between top face sheet and core constituents at P =
1000N

Figure 11: Predicted stress distribution in interface

between bottom face sheet and core constituents at

P = 1000N

Figure 11 shows the predicted peel stress, or tensile stress, along the lower interface. The

lower interface is defined as a line at the height of the top side of the bottom face sheet where

it connects to the potting and the core material. Along most of the interface the stresses are

predicted to be zero, or very close to zero. At the transition between the core and the potting

the predictions show some stress singularities. Since the stress levels are relatively low they are

assumed not to be of significance to the pull-out strength of the insert, but to be sure it should

be assessed with material tests.

5 Failure analysis

Two examples of possible output from the proposed analysis model are given below. This is

not an exhaustive list, only a presentation of two possibilities which are believed to be most in-

teresting when analyzing pull-out strength of inserts in sandwich plates. The loading, boundary

conditions, and geometry are the same as used in the benchmarking section. Material properties

for the potting are taken from the material data sheet for 3M DP760, and the material data for the

core material are taken from the material data sheet for Hexcel HexWeb CRF-1/4-ACG-.002-

3.4. Because of limited availability of material properties, the compressive strength is assumed

to be equal to the tensile strength for both materials. The material data used are presented in

table 2. A test series to verify the predictions shown here is initiated, but not finalized therefore

experimental data cannot be presented.

Shear failure in core or potting

One of the common modes of failure in pull-out of inserts in sandwich panels is core shear

failure [2], [8], [14], and [15]. A quadratic shear failure criterion according to eqn. 6 was

implemented in the proposed analysis model. The predicted failure index is shown in figure

12. The upper graph shows the distribution within the potting, and the lower graph shows the
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Core Young’s modulus Ec 540 MPa

Core shear modulus Gc 195 MPa

Core shear strength τ̂l 1.4 MPa

Core shear strength τ̂w 0.85 MPa

Core compressive strength σ̂c 0.85 MPa

Potting Young’s modulus Ep 5.9 GPa

Potting shear modulus Gc 2.2 GPa

Potting shear strength τ̂p 29 MPa

Potting compressive strength σ̂c 79 MPa

Table 2: Material properties for core material and potting used in the examples below

distribution within the core material.

Ssc =

(
τrz

τ̂rz

)2

+

(
τθz

τ̂θz

)2

≤ 1 (6)

In eqn. 6 τij is the stress level in the ij direction according to the analysis, and τ̂ij is allowable

stress in the same direction. The criterion predicts failure when the value is equal to or greater

than one. With the material properties in table 2 inserted into the analysis model, shear failure

is predicted to occur in the potting at a pull out load of 844 kN, and shear failure in the core is

predicted to occur at a pull out load of 3.10 kN. As can be seen in the lower graph in figure 12

failure is predicted to occur in the core at the intersection between core and potting.
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Figure 12: Predicted shear failure criterion, failure

due to stress is predicted when Ssc ≥ 1. Predicted

mode of failure, shear failure in core at a predicted

failure load Pcrit = 3.10kN
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predicted failure load Pcrit = 2.96kN
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Peel of face sheet from core or potting

Another important mode of failure in pull-out of fully potted inserts in sandwich panels is

peel, or separation, of the rear side face sheet from the core material or potting [2]. A quadratic

criterion taking both tensile stresses and shear stresses according to eqn. (7) into account was

implemented into the analysis model. The upper graph in figure 13 shows the failure index at

the interface between the face sheet and potting, and the lower graph in figure 13 shows the

failure index at the interface between the face sheet and the core material.

Spc =

(
σz

σ̂z

)2

+

(
τrz

τ̂rz

)2

+

(
τθz

τ̂θz

)2

≤ 1 (7)

In eqn. (7) σz is the predicted stress, and σ̂z the allowable tensile stress in the interface.

Failure is predicted to occur when the value equals or exceeds one. Using the material data in

table 2; peel failure in the upper interface between the face sheet and the core is predicted to

occur at a pull out load of 2.96 kN, and peel failure between the lower face sheet and the core

is predicted to occur at a pull out load of 2.98 kN. As figure 13 shows, failure is predicted to

occur in the core at the intersection between the core and the potting.

6 Conclusion

A model for the analysis of the pull-out strength of inserts in sandwich panels has been

assessed. The predicted deflections showed good agreement compared with predictions made

with an analytical expression, a 2 dimensional axisymmetric plane FE model, and a 3 dimen-

sional sandwich plate model. Stress levels were compared between the proposed model and a

2 dimensional FE model; shear stress levels in the middle of the sandwich plate, and peel stress

levels along the interface between the top face sheet and core and potting as well as the inter-

face between the bottom face sheet and core and potting. Good agreement was found between

predictions along the interfaces between the face and core, and also in the interface between the

face and potting. For initial calculations of the strength of an insert in a sandwich panel, the

proposed model could prove to be a very powerful and relatively simple tool to use.
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Summary. This article deals with experimental, theoretical, and FE characterization
of the local buckling in foam-core sandwich beams. In the theoretical approach, this
phenomena is considered in a periodic formulation (unbounded wrinkle wave); a non-
linear stress-strain response of the face material is accounted for. In the FE approach, non-
linearity of the core material is modelled also. Full-field strain measurement is employed in
the tests showing that the commonly used edgewise compression set-up can cause premature
waviness of the faces and, therefore, nonlinear local deformations in the core layer.

1 INTRODUCTION

The wrinkling (local buckling) problem is an important part of the sandwich design,
since the core layer provides a limited support for the in-plane compressed face sheets.
This has been investigated in many studies, and a number of experimental findings
and theoretical approaches appeared. The known solutions usually assume an explosive
(bifurcation-type) and unbounded propagation of the wrinkle waviness and a purely elastic
behaviour of the core material. The face sheet material is also often considered as ideally
elastic. However, many materials (polymer composites, metals, etc.) exhibit a non-
linear deformation prominent under high stresses. The foam materials can also show a
nonlinear response even at small strains. Finally, the local buckling usually does not occur
simultaneously on the entire sandwich panel. All these features can cause the failure onset
at a significantly lower load than that predicted by a linear-elastic model.

In this article, the local buckling of a typical foam-core sandwich is studied under
uniaxial edgewise compression. The test set-up is shown to produce a complex stress-
strain field in the core layer. Due to the nonlinear core material response, this effect
results in a premature failure that can be adequately predicted only using an FE model.
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Table 1: Basic mechanical properties of the sandwich constituents (tension/compression).

material thickness, mm E, MPa ν εult, % σult, MPa γult, grad τult, MPa

GFRP 2.4 24540a 0.25 2.2a/1.4b 295a/291b – –
WF51 50 85c 0.32 3.3d/2.3c 1.42d/0.90c 1.2e 0.5e

a ASTM D 638M b ASTM D 3410 c ASTM D 1623-78 (out-of-plane of the foam block)
d ASTM D 3039 (in-plane of the foam block) e ASTM C 273 (in-plane of the foam block)

2 EXPERIMENTAL

The object of study are straight beams (47×270 mm in-plane dimension) comprised of
thick Rohacell WF51 foam core and relatively thin transversely quasi-isotropic faces. The
latter is made of 4 layers (symmetric lay-up) of E-glass non-crimp fabric impregnated with
vinylester resin. Basic material data (the Young’s modulus E, ultimate stress, σult, τult,
and strain, εult, γult) are listed in Table 1. The Poisson’s ratio, ν, is either estimated by the
laminate theory or taken from the core manufacturer’s data sheet, Ref. [1]. Figures 1 and 2
show typical load curves and tangent moduli (derived by differentiation of the curves) of
these materials under a quasi-static uniaxial loading. Large drop in the tangent moduli
prior to the failure can be seen in Fig. 2, especially for the compressed foam material.

The edgewise compression tests are performed according to ASTM C364–94. The
specimen edges are reinforced with 15 mm long tabs made of the same laminate as the
face sheets and glued at their outer surfaces. Then, the edges are milled to ensure that
they are flat and parallel. The specimens are compressed between two rigid plates at the
cross-head displacement rate of 2 mm/min. Series of 10 specimens is tested.

A full-field displacement registration equipment (one digital camera with 1 fps picture
frequency and Limess software) was used for several tests. Figure 3 shows a typical
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Figure 1: Stress-strain curves for GFRP (left) and WF51 (right) under uniaxial loading.
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transversal strain field observed prior to the failure. It is seen that a significant local
deformation occurs in the core due to the face sheet waviness. This waviness appears
already at the early loading stage, obviously due to 1) a load eccentricity (because of tabs)
and 2) self-fixation of the edges at the loading plates that results in a slight swell of the
specimen (because of the Poisson’s effect). In principle, the first difficulty can be overcome
by gluing extra tabs into the core underneath the face sheets. The second difficulty seems
to be an inherent property of this standard test, since the friction inevitably prevents free
transversal displacements of the specimen edges.

Figure 4 shows typical strain distributions along the face-core interface (at about 1 mm
distance below the interface) for two loading stages. Particularly, Fig. 4(right) shows the
strain components measured under the bottom face in Fig. 3 (i.e. less than 1 sec before the
failure). Data shown in Fig. 4(left) are measured at the same line but much earlier (under
approximately 1/2 of the ultimate load). Both plots exhibit waviness having prominent
maximums near the tabs. At the moment of failure, the maximal compressive strain
underneath the face-core interface is about 4% that is two times more than the yield strain
typical for this foam grade, Table 1. Corresponding inward transversal displacements are
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Figure 2: Tangent moduli for GFRP (left) and WF51 (right) under uniaxial loading. Fitted with the
5-th order polynomials, since the original data show a large scatter.
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Figure 3: Typical strain field (εy) observed in the core prior to the failure.
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about 0.6–0.8 mm. The tensile strain in the adjacent bulges approaches 1%; the maximal
outward displacement is about 0.4–0.5 mm . Taking into account the non-linear material
response, Fig. 1(right), it is obvious that the supporting effect of the core layer decreases
or even vanishes (due to the core crushing in compression) in these local areas.

Figure 5(left) shows progression of several strain maximums (compressive and tensile)
during the loading. The strains are measured and averaged within small circles near the
bottom face as shown in Fig. 3. The 1st and 2nd maximums show almost constant strain
rate until a certain moment, when it increases suddenly. This can be attributed to the
local buckling onset. The 3rd and 4th maximums do not show such a behaviour. Thus,
the buckling is localized near the tabs and, in spite of a continuous waviness of face sheets,
does not occur in the central part of the specimen, obviously due to almost intact (stiffer)
support of the core layer. The face sheet debonding apparently starts in the 2nd zone,
most likely by a shear or tensile fracture of the foam material at the face-core interface.

The load curve (load cell signal vs. edge displacement), especially after its differentiation
as shown in Fig. 5(right), can also be an indicator of the local buckling onset. It is seen
that, after a short period of the clearance adjustment, the overall stiffness culminates in
step #20 and then decreases gradually by about 25%. This effect should be attributed to
a gradually increasing face sheet waviness as well as to a non-linear behaviour of the face
and core materials. At step #98, the stiffness starts to degrade rapidly. This moment
coincides with the local buckling onset seen in Fig. 5(left).

The test data are given in Table 2 in comparison with the theoretical and FE results
discussed below. The ultimate stress is used, because they differ very little from the
buckling onset values. Since the in-plane stiffness of the laminate is much larger than
that of the core layer, the compressive stress in the face sheet is calculated as

σ = P/2hfb, (1)

where P is the total load, hf is the face thickness, and b is the beam width.
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Table 2: Ultimate strength obtained experimentally vs. theoretical and FE predictions.

test data, all linear-elastic nonlinear-elastic face all nonlinear-elastic
Eq.(1) Eq.(2) FE Eq.(3) FE FE

σult, MPa 168.3–192.4 317.1 344.1 279.9 293.0 216.8

3 THEORETICAL

Consider static bending of an infinite beam (which represents the face sheet) having
thickness hf and bonded to an isotropic half-plane (which represents an infinitely thick
core layer). The beam is axially compressed by a “dead” force σhf (per unit width). The
face sheet is assumed to be thin and non-stretchable and to keep the straight form of
equilibrium up to the critical state. Thus, there is no difference between displacements
at its midplane and at the face-core interface, and no influence of the interfacial shear
stress. As a first approximation, both the face and core materials are considered as ideally
linear-elastic. Using the thin plate Kirchoff-Love theory for the face and Lamé equations
for the core, the critical (in the Euler’s sense) stress for this model is, Ref. [2],

σult =
3
3
√

4

xn

hf
E1, x3

n =
Df

E1
, Df =

Efh
3
f

12
, E1 =

2Ec

(1 + νc)(3 − νc)
, l = π

3
√

2xn (2)

where Df is the flexural rigidity of the face sheet, E1 is the reduced elastic modulus of
the core layer (plane stress state is assumed), and l is the natural wavelength.

Using Eq. (2) and elastic properties from Table 1, the critical stress is easily calculated.
However, its value exceeds the average test data (175.7 MPa) in 80%, Table 2. The natural
wavelength is estimated to be about 33 mm that also disagrees with Fig. 4.

Of course, a better approach is to account for the nonlinear behaviour of the face sheet
material. For example, the reduced modulus of elasticity (called also the von Kármán’s
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Figure 5: Typical growth of the max. strain in the core (left) and typical load-displacement response
(right, σ is given by Eq. (1)) under edgewise compression. L is the beam length; u is the edge displacement.
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modulus) can be used. In the present case of a rectangular cross-section its reads as

Er(σ) =
4EfEt(σ)(√

Ef +
√

Et(σ)
)2 , (3)

where Et is the tangent modulus, Fig. 2(left). The reduced modulus theory assumes that
a stress release occurs on the convex side of the beam simultaneously with the buckling
onset. For a short-length wrinkle wave the use of Eq. (3) is even conservative, since certain
portions of the face sheet undergo mainly rotation with a minor bending and thus have a
stress release on both sides. This is because the wrinkled face sheet is less shortened than
in the case of an ideally uniaxial deformation. Therefore, the “correct” critical stress will
lie somewhere above the value calculated using the reduced modulus, Refs. [3, 4].

After substitution of Eq. (3), Eq. (2) becomes non-linear and requires a numerical
procedure. Solution is given in Table 2. As can be seen, the reduced modulus theory
gives more realistic estimation of the critical stress if compare with the purely elastic
solution; however, the predicted value is still 60% higher than the experimental one. The
natural wavelength is estimated to be about 29 mm that is also still not realistic.

Thus, the face sheet material nonlinearity has important but not primary destabilizing
influence on the structure. To approach a more accurate solution, it is necessary to
account for localization of the face sheet bending and for local nonlinear deformation of
the core material, which are observed in the experimental study. Obviously this can not
be achieved analytically, and an FE analysis should thus be applied.

4 FE ANALYSIS

The FE package CosmosM is used. Since the core layer is thick and the strains decay
rapidly through its thickness, Fig. 3, only one face sheet and half of the core thickness are
modelled. Schematic of the model with applied boundary conditions is shown in Fig. 6.

The core is meshed as a rectangular domain with 4-node isotropic shell elements
(shell4). The face and tabs are meshed with 2-node beam elements (beam2d). The
model is composed of 10 elements through the core and 108 elements lengthwise, i.e.
a 2.5×2.5 mm mesh is created. The tabs have the same mesh density and are coupled
node-to-node to the face, enforcing the two nodes to rotate and move by the same amount.
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Figure 6: Schematic of the FE model, not scaled.
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A conservative compressive load (concentrated force) is applied at the edge of one of
the tabs. Actually, it should be applied somewhere in between the tab midplane and the
face midplane, or applied in two portions at both midlines. The used way is a conservative
simplification resulting in a larger load eccentricity.

The linear-elastic analysis is performed first. The buckling mode (only the 1st mode
is considered here) is shown in Fig. 7(top); a slight non-symmetry is seen which can
be attributed to a limited length of the model. The critical stress agrees well with the
theoretical estimation by Eq. (2), Table 2; the difference does not exceed 10%. The
wavelength is about 30 mm that is also close to the theoretical results.

A more refined model accounts for the nonlinear elastic response of the face sheet
material, Fig. 1(left). In the software, the nonlinear elastic model relies on the assumption
of proportional loading, when components of the stress tensor vary monotonically in a
constant ratio to each other. Then, the total strain vector is used to compute the effective
strain to obtain the current position at the defined stress-strain curve, Ref. [5].

Result of a geometrically linear FE analysis is given in Table 2 and shows a minor
(about 5%) discrepancy with the theoretical value calculated using the reduced modulus
theory. The buckling mode (again non-symmetric with respect to the centre) is shown in
Fig. 7(bottom). However, the wavelength is about two times smaller than the theoretical
one (12 mm vs. 29 mm). The reason for this effect is not yet clear for the authors.

Finally, nonlinear response of the core material is also introduced into the FE model,
according to Fig. 1(right). The same nonlinear elastic material model is used as for the
face sheet; the foam crush plateau is modelled as almost horizontal line producing very
low tangent modulus, see the dash-and-dot line in Fig. 1(right). Geometrically nonlinear
analyses are performed to calculate the equilibrium displacement solutions for a number
of given loads, by using the modified Newton-Raphson method under the load control.

The deformed shape and strain fields are shown in Fig. 8 for the load step #18
at which, as proved below, the local buckling occurs. Comparison with the full-field
measurements, Fig. 3, reveals a good agreement of the strain pattern. However, the
FE analysis overestimates the maximal strains by a factor of 2. This can be due to 1)
significantly increased, if compare to a real specimen, load eccentricity and 2) localization
of the core “crushing” in the elements adjoining the face sheet (in a real specimen, the
foam cells are filled with the resin at the interface and thus have a smoother strain field).

Figure 7: Buckling modes: linear-elastic face and core (top) or nonlinear elastic face and linear-elastic
core (bottom). Geometrically linear solutions.
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1.9%-8.3%

-1.56 grad 1.56 grad

Figure 8: Strain fields at the load step #18: transversal, εy, (top) and shear, γ, (bottom). Nonlinear
elastic face and core, geometrically nonlinear solution. The deformed shape is scaled by a factor of 5.
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Figure 9: Growth of the max. strains in the core (left) and load-displacement response (right) in the
nonlinear FE analysis. L is the beam length; u is the edge displacement. Positive strains are displayed.

Figure 9(left) shows growth of the maximal strains in the core during the loading. It
is seen that the tensile strain under the bulge (that corresponds to zone #2 in Fig. 3)
can not initiate the failure, since the ultimate value (3.3%, Table 1) is not reached. The
model can most likely fail by the shear fracture, since the maximal shear stress exceeds
the ultimate value of 1.2 grad. But these are very rough speculations hardly applicable
to the real sandwich beams, because the shear strength data are obtained on large foam
specimens, which failed due to a stress concentration, Ref. [6]. Last but not least, the
used rheological model (nonlinear elasticity with proportional strain growth) and uniaxial
test data can not provide a quantitatively correct results for the strain fields.

The load curve is shown in Fig. 9(right), along with the stiffness function. They
generally resemble Fig. 5(right), although the FE model produces a stiffer response. As
in the real specimens, the stiffness degradation accelerates at a certain moment (step
#18), which may be considered as the local buckling onset. The corresponding stress,
Table 2, is close to the upper limit of the test data, the difference is only 13%. Taking
into account imperfections existing in the real specimens and simplifications introduced
in the FE analysis, such a result is wholly satisfactory.
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5 CONCLUSIONS

The main results of this preliminary study can be outlined as

• the specimen configuration commonly used in the edgewise compression testing of
sandwich beams has a load eccentricity due to the presence of tabs. This causes a
local bending of the face sheet accompanying by a nonlinear deformation of the foam
core. As a result, the buckling is localized, and the ultimate load can significantly
be lower than that predicted by a linear stability analysis;

• therefore, for some combinations of the sandwich constituents, nonlinearity of the
face sheet and core materials can be very important for a correct prediction of the
ultimate load. These effects can adequately be accounted for only in an FE analysis.
It is demonstrated that the simplest uniaxial test data combined with a low-CPU
FE model can provide a solution sufficient for the engineering purposes;

• the results can be improved by introducing more realistic rheological behaviour and
by using more complex test data (e.g. for multi-axial strain state) in the FE model,
especially for the core material. Also, a better load application can be modelled by
using the shell or solid elements for the face sheet (and, consequently, for the core
layer in the latter case) as well as by accounting for non-uniformity of the density
distribution through-the-thickness of the foam core, Ref. [6].
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Summary. The present study is concerned with a probabilistic homogenization analy-
sis of solid foams. In order to account for the effect of micro structural disorder, a lo-
cal probabilistic approach is proposed. The analysis is applied to different two-
dimensional model foams, where the effects of the disordered microstructure on the ef-
fective properties are outlined.  

1 INTRODUCTION 
Solid foams are important core materials in modern sandwich construction. The main ad-

vantages of this class of materials are their low specific weight in conjunction with their abil-
ity to perform additional, non-mechanical functions such as e.g. heat insulation. Disadvantage 
is the disordered random microstructure leading in many cases to a distinct scatter in the mac-
roscopic material response. 

Since the pioneering work of Gent and Thomas [6] appeared, numerous studies on the me-
chanics of foamed materials and the numerical homogenization analysis of these materials 
have been published (e.g. Gibson and Ashby [7], [8], Warren and Kraynik [16]). Most of 
these analyses are based on a regular periodic model of the micro structure. On the other 
hand, structural foams may exhibit a distinct micro structural disorder resulting in a distinct 
uncertainty in the effective properties whether determined experimentally or numerically. 
Experimentally, the distinct variability has been proven especially in the recent systematic 
studies by Blazy et al. [1] as well as by Ramamurthy and Paul [11] where strong variabilities 
of all effective mechanical properties have been observed. Especially in the latter study, local 
variations in the relative density of the material have been identified as an important source of 
macroscopic uncertainties in the material response. 

Most of the numerical approaches dealing with the effects of micro structural disorder are 
based on a homogenization analysis using a single large scale representative volume element 
where the micro structural geometry is determined in a randomized manner (e.g. Huyse and 
Maes [10], Roberts and Garboczi [12], Shulmeister et al. [13], Zhu et al. [17]). The computa-
tional foam model is in most cases generated using a Voronoi [15] tessellation of the repre-
sentative volume element, either in its direct ( -) version or in a constrained form ( -Voronoi 

1057



Jörg Hohe and Volker Hardenacke. 

tessellation) requiring a minimum distance of neighboring cell nuclei (e.g. Chen et al. [2]). 
Although these approaches are able to account for the effects of the randomness of the micro 
structure on the average material properties, they are unable to assess the scatter of the proper-
ties. Furthermore, extremely large representative volume elements are required in order to get 
convergent results. Evidence are the remaining numerical anisotropies observed in several 
studies. 

In order to circumvent the mentioned problems, Fortes and Ashby [5] have proposed a di-
rect probabilistic approach based on the probability of the cell wall orientations in space. 
Other probabilistic approaches have been proposed by Cuitiño and Zheng [3] based on a Tay-
lor averaging technique. In order to assess especially the scatter in the effective properties, 
Hohe and Becker [9] have used a numerical technique based on the multiple analysis of a 
small scale volume element with randomized micro structure in conjunction with a stochastic 
evaluation of the results. 

In the present study, a different approach is employed, where a large scale statistically rep-
resentative volume element for the micro structure is subdivided into small, statistically non 
representative testing volume elements. For the testing volume elements, the homogenization 
analysis is performed and the results are evaluated by stochastic methods, providing the prob-
ability distributions for the effective properties. The computational foam models are generated 
using a Voronoi technique in Laguerre geometry (see e.g. Fan et al. [4]) which was found to 
provide the most appropriate models for foamed materials. For simplicity, all analyses are 
performed in two dimensions. Nevertheless, an extension to three dimensions can be per-
formed in a straight forward manner. 

2 LOCAL PROBABILISTIC HOMOGENIZATION 

2.1 Strain energy based concept 

The homogenization analyses in the present study are based on a strain energy based con-
cept presented earlier (Hohe and Becker [9]). This approach is based on the concept of the 
representative volume element (Fig. 1). Hence, the effective stresses and the effective material 
properties are determined such that the behavior of a representative volume element consist-
ing of the given microstructure and a similar volume element consisting of the quasi homoge-
neous effective medium is equivalent on the mesoscopic level of structural hierarchy. 
Mesoscopically equivalent mechanical behavior of both volume elements is assumed if the 
volume average 

***11

*

wdVwdVww
RVE

RVE

RVE

RVE VV
=== (1)

of the recoverable strain energy density in both volume elements is equal, provided that both 
volume elements are subject to a mesoscopically equivalent state of deformation, defined by 
the condition that the volume average 
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****11

*
ijijVijVij FdVFdVFF
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RVE

RVE

RVE ===
(2)

of the components Fij of the deformation gradient for both elements is equal. The effective 
strains are described in terms of the components 

( )ijkjkiij FF= 2
1 (3)

of the Green-Lagrange strain tensor or its infinitesimal counterpart ij. The effective stress 
state is then described in terms of the components 

0=

=

pl
ijdij

ij
w (4)

of the second Piola-Kirchhoff stress tensor as the energy conjugate to the chosen effective 
strain measure. If the strain energy density w is computed numerically, the partial differentia-
tion in Eq. (4) has to be performed by means of an appropriate numerical differentiation 
scheme. 

2.2 Local stochastic enhancement 

The standard probabilistic enhancement of the methodology for determination of the effec-
tive material properties as proposed in section 2.1 consists either in the single analysis of a 
large scale representative volume element with a random micro structure or in the repeated 
analysis of a small scale volume element in conjunction with a stochastic evaluation of the 
results. Whereas the scatter of the effective material properties is not accessible in the first 

Figure 0: Concept of the representative volume element. 
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case, problems may arise in the second case due to the exclusive consideration of small scale 
volume elements consisting of a limited number of pores which may exclude several specific 
effects such as the occurrence of a single large pore surrounded by much smaller ones. 

In order to avoid these problems, an alternative route is proposed in the present study. In a 
first step, a large scale, statistically representative computational foam model is generated 
using a random number generator. The computational foam model is subjected to a prescribed 
effective strain state in conjunction with periodic boundary conditions along the external sur-
faces of the model. In a second step, the large scale computational foam model is subdivided 
into small scale testing volume elements consisting of a single cell wall intersection and half 
of the adjacent cell walls (see Fig. 2). For each of the testing volume elements, the effective 
strains are determined by means of Eqns. (2) and (3) which are evaluated with respect to the 
area TVE of the individual testing volume elements. In a similar manner, the effective 
stresses are obtained by means of a local evaluation of Eq. (4). 

The results are assessed in a stochastic manner. In this context, the probability distribution 
for the effective property y is obtained by rearranging the individual results yi for the effective 
property y into ascending order and assigning a cumulative probability  

( ) qi
q

i
yF i ,,1,2

1

…==
(5)

to each of the data. In Eq. (5), q denotes the total number of testing volume elements in the 
model. The corresponding probability density distribution f(y) for the effective material prop-
erty y can then be obtained as the (numerical) partial derivative of the cumulative probability 
distribution F(y) with respect to its argument y. Alternatively, a simplified stochastic assess-
ment can be performed in terms of the expectation value 

Figure 2: Subdivision of the computational foam model into testing volume elements. 
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( ) ( )
=

=

q
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ii ypyyE
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(6)

and the variance 

( ) ( )( ) ( )
=

=

q

i
ii ypyyEyV

1

2 (7)

of the macroscopic material property y where p(yi) is the individual probability for the occur-
rence of the result yi. Although the present study is restricted to two-dimensional examples, 
the method can be extended to the three-dimensional case in a straightforward manner without 
any restrictions. 

3 COMPUTATIONAL FOAM MODELS 

3.1 Strategies for the division of space 
For the randomized generation of computational foam models, different strategies have 

been proposed in the literature. The most basic procedure is a Voronoi [15] tessellation of the 
representative volume element. In this approach, first a number of nucleation points is ran-
domly generated within the area RVE of the representative volume element. In a second step, 
the area of the cell belonging to nucleation point pi is defined through 

( ) ( ) ( ){ } njiijpprpprRppp jEiEi ,,1,,,,,,| 2 …=<= (8)

by all spatial points p featuring an Euclidean distance 

( ) ( ) ( )( )2
1

2)(
22

2)(
11, ii

iE xxxxppr +=
(9)

to nucleation point pi which is smaller than the distance to all other nucleation points. Since 
this procedure results in a -distribution of the cell size, the Voronoi tessellation in its direct 
form is often termed -Voronoi tessellation. A variant of this procedure avoiding the occur-
rence of small cells is the -Voronoi process where the distance between the individual nuclei 
is constrained by introduction of a minimum distance  

( ) nijnipprr jiEE ,,1,,,1,,min …… +==< (10)

between all nucleation points. 
As mentioned by Fan et al. [4], further improvements may be obtained by using the 

Laguerre distance 

( ) ( )( ) ( )( )2
1

2*2,, iiEiL rpprppr =
(11)

with an individual radius ri
* assigned to all nucleation points pi in conjunction with Eq. (8) 

instead of its Euclidean counterpart (9). 
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Within the present study, all of the mentioned procedures are used in a periodic manner by 
copying all nucleation points into the direct neighborhood of the representative volume ele-
ment so that random, but periodic micro structures are obtained. 

3.2 Assessment in terms of quantitative criteria

The three different methods for generation of computational foam models described in sec-
tion 3.1 are applied in a comparative study for an assessment of the quality of the obtained 
models regarding their ability to recapture the most important features of the micro structure 
of solid foams. The assessment is performed in a quantitative manner based on two criteria 
using objective parameters rather than by a simple visual qualitative check. 

The first parameter to be used is based on Kelvin’s [14] criterion, requiring minimum sur-
face energy for the developing cellular micro structure. For the two-dimensional cellular 
structures considered in the present study, this criterion results in the requirement that the ra-
tio of the total length of the cell walls surrounding an individual cell to the area covered by 
the cell has to be minimum for all cells in the respective computational foam model. A 
weighted averaging of this ratio for all cells in the representative volume element results in a 
quality criterion based on the requirement that the average Kelvin parameter 

=

=

n

i
iRVEavg S

A
K

1

1 (12)

with the area ARVE of the representative volume element and the lengths Si of the cell walls 
surrounding cell no. i has to be minimum for a high quality computational foam model. 

A second important criterion for the quality of computational foam models is the statistical 
size distribution of the individual cells in the model. As it has been pointed out, among others, 
by Fan et al. [4], the cell size distribution for real solid foams is of the logarithmic normal 
type featuring the probability density distribution 

( )
( )

( )

2

2

2
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2
ln1

2
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=
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for the area A of the individual cells with the shape and position parameters  and  respec-
tively. An assessment of the proximity of the cell size distribution of a given computational 
foam model to the logarithmic normal distribution is made by adapting the shape and position 
parameters  and  of the logarithmic normal distribution such that the least square error sum 

( ) ( )( )
=

=

n

i
icontidiscr AFAFe

1

2 (14)

between the given discrete distribution and the adapted continuous distribution becomes 
minimum. The final error sum e is then employed as a quality criterion for assessment of the 
ability of the respective strategy for the division of space to recapture the experimentally ob-
served cell size distribution. 
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The quality assessment is performed for the strategies for the division of space sketched in 
Section 3.1. All three strategies are employed in their direct form as well as with a subsequent 
smoothing and optimization of the computational foam models. The smoothing procedure 
consists in a simple re-positioning of the cell wall intersections to the centroid of the corre-
sponding Delaunay triangle. In the optimization procedure, the cell wall intersections are re-
positioned such that the Kelvin parameter Kavg according to Eq. (12) is minimized. 

For each procedure, 100 models are generated. The results for the averaged parameters 
Kavg and e are presented in Fig. 3. In terms of the energetic Kelvin criterion, the best results 
are obtained by means of the Voronoi process in Laguerre geometry, whereas both the - and 
the -Voronoi processes result in computational foam models with inferior quality. Although 
the quality of the foam models based on the - and -Voronoi tessellations might be improved 
by subsequent smoothing or optimization, these models are still outperformed by the models 
generated by a Voronoi tessellation in Laguerre geometry. 

With respect to the cell size distribution, again the qualitatively best results are obtained by 
the Voronoi tessellation in Laguerre geometry, whereas poor models are obtained by means of 
the Voronoi process using the Euclidean distance, especially in the unconstrained ( -) ver-
sion. In general, the quality of the foam models regarding the cell size distribution decreases, 
if a subsequent smoothing or optimization is applied to the computational foam models, since 
both of these procedures have the sole objective of an improvement in terms of the Kelvin 
criterion. Since the Voronoi process in Laguerre geometry provides reasonable results in 
terms of both criteria, this procedure is exclusively used for generation of the foam models 
employed in the subsequent parameter studies of this study. 

Figure 3: Quality assessment of different strategies for generation of computational foam models. 
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4 EXAMPLES 

4.1 Convergence 
In a preliminary analysis, the convergence of the proposed method regarding the necessary 

size of the representative volume element and thus the necessary number of testing volume 
elements is assessed. For this purpose, different computational foam models with 32 to 512 
Voronoi cells are generated and subjected to uniaxial tensile and compressive states of defor-
mation 11 = 0.1 and 11 = -0.025 respectively and 22 = 12 =0. 

The resulting probability distributions for the corresponding local effective strains 11
TVE

on testing volume element level are plotted in Fig. 4. For both, the tensile and the compres-
sive state of deformation, convergent results with smooth probability distributions F( 11

TVE)
are obtained for 512 Voronoi cells and thus 1024 testing volume elements. Although lower 
numbers of cells might be sufficient for the tensile case, all subsequent analyses are based on 
this model size. 

4.2 Effective material response 
As an illustrative micro structural example, the probabilistic homogenization scheme pro-

posed in the present study is applied to the prediction of the effective material response of a 
hyperelastic two-dimensional model foam. The material behavior on the cell wall level is as-
sumed to be governed by a compressible Ogden type constitutive relation 
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where i are the principal values of the deformation gradient and J is the corresponding Jaco-
bian. The material parameters are given by 1 = 2, 1 = 0.5 GPa, 1 = 0.6 GPa, 2 = -2,  

2 = -0.1 GPa and 2 = . Externally, the computational foam model is subjected to uniaxial 

Figure 4: Study of convergence. 
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tensile and compressive states of deformation with an applied external Green-Lagrange strain 
of 11 = ±0.025, whereas all other macroscopic strain components are assumed to vanish. The 
relative density of the foam is assumed to be  = 0.05. 

In Fig. 5, the probability distributions F( ij) for the local (testing volume element) strains 
11

TVE and 22
TVE longitudinal and perpendicular to the external straining direction are pre-

sented for the tensile load case. The probability distributions for the corresponding local stress 
components 11

TVE and 22
TVE are presented in Fig. 6. Three different degrees of micro struc-

tural disorder are considered, characterized by the variance V(A/A0) of the cell size distribu-
tion ranging from regular to highly disordered micro structures. The local effective strain 
components are distributed around the values of the corresponding applied strains with 

11 = 0.025 and 22 = 0 which are recovered as the corresponding expectation values. For both 
components, similar variances are obtained, indicated by similar slopes of the probability dis-
tributions. Increasing degrees V(A/A0) of micro structural disorder lead to increasing uncer-
tainties for the local effective strain components, nevertheless, only minor quantitative effects 

Figure 6: Probability distributions for the testing volume element stresses, uniaxial tension. 

Figure 5: Probability distributions for the testing volume element strains, uniaxial tension. 
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are observed. Stronger quantitative effects of the degree of micro structural disorder on the 
uncertainties of the effective properties are obtained in the case of the local effective stresses 
(see Fig. 6). This discrepancy is caused by the fact that the effective stress components are 
governed by both, the effective stiffness and the effective strain state of the respective testing 
volume element which are both affected by the degree of micro structural disorder. 

The counterparts of Figs. 5 and 6 for the compressive load case are presented in Figs. 7 and 
8 respectively. Again, the x1-direction is the macroscopic straining direction and again, three 
different degrees of micro structural disorder are considered. Compared to the tensile load 
case, higher degrees of uncertainty are obtained for the effective strain components (see 
Figs. 5 and 7). This effect is caused by the occurrence of micro structural instabilities leading 
to strain localization in areas consisting of weaker foam cells. The occurrence of micro struc-
tural instabilities in general results in a limitation of the corresponding local effective stresses 
in the following postbuckling range. Hence, the probability distributions for the local effective 
stresses under externally applied compression feature smaller scatter band widths compared to 
the tensile load case (see Figs. 6 and 8). Nevertheless, the average level of the effective stress 

Figure 7: Probability distributions for the testing volume element strains, uniaxial compression. 

Figure 8: Probability distributions for the testing volume element stresses, uniaxial compression. 

1066



Probabilistic homogenization analysis of solid foams accounting for disorder effects. 

components is also found to be much lower in overall compression compared to the tensile 
load case. Since the compressive range is strongly governed by micro structural instabilities 
and the corresponding effects, the degree V(A/A0) of micro structural disorder has only minor 
effects on both the effective strain and stress components, provided that the degree of disorder 
is sufficient to prevent the occurrence of instability effects in the rigorous Eulerian sense as 
they would occur in the case of perfectly regular periodic micro structures. 

5 CONCLUSION 
The present study is concerned with a probabilistic homogenization analysis for structural 

foams as they are common as core materials in sandwich construction. The proposed proce-
dure provides an efficient numerical tool for assessment of the scatter in the effective material 
response of solid foams both, on the lowest possible level of structural hierarchy and on 
higher levels. The scatter of the effective material behavior is found to be mostly controlled 
by uncertainties in the geometry and especially by fluctuations in the local relative density. 
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Summary. Flexural vibration of a clamped-clamped, three-layer, one-span sandwich, 
unidirectional structure composed of isotropic layers is considered in the paper. A new model 
obtained within the local linear theory of elastodynamics is presented. Very realistic 
boundary conditions at edges of the structure, which correspond to the engineering solution 
with the edge stiffeners, are introduced and satisfied. Eight eigenfrequencies of the structure, 
calculated according to the model, are given. A comparative analysis of the results  is done 
and some conclusions are presented.

1 INTRODUCTION 
The eigenvalue problem of sandwich structures is still not solved analytically with a 

sufficient exactitude and accuracy. The existing theories predict eigenfrequencies which are 
not close to the experimental data - see e.g., [1-2, 5-8]. In particular, eigenfrequencies of the 
lower modes of vibration are usually much lower than the measured values. Obviously, there 
are high differencies between predictions of different analytical models. For instance, the 
percentage difference in the fundamental frequencies of simply supported sandwich panel 
predicted by two models presented in [9] is about 15%. The same phenomenon, i.e., lower 
computational eigenfrequencies (predicted by analytical models) than the corresponding 
experimental data, is observed when the C-C structures are considered. It is not easy to 
explain the differencies when the analytical model (e.g., [6]) is capable to satisfy very refined 
(accurate) edge boundary conditions. The probable explanation in the case is that the model 
[6] is a particular case of more general model (model I) given in [9].  

It is an aim of the presentation to discuss the new model that is to show both its 
mathematical details and some comparisons of numerical results. The present author obtained 
within the local linear elastodynamics several vibrational models for the unidirectional, both 
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cantilever [1] and clamped-clamped (C-C) [2], sandwich structures. However, the models 
have been obtained for some specific, realistic but simplified, edge boundary conditions, 
refering only to the faces of the structures. The models were obtained without expanding the 
displacement and stress fields (within the structures) into series. All through-the-thickness 
boundary conditions and the compatibility equations of the local linear elastodynamics have 
been satisfied in the models [1,2] and their final (numerical) form in the case of the free 
vibration has been expressed as follows,

.....,6,4,2,0)2/()2/(

,....,5,3,1,0)2/()2/(

mLctgLctgh
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mmmm
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I
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The symbols m, m and m, in the Eqs (1,2), are unknown while m is the eigenfrequency.
The new model presented here has been elaborated for the assumption that m= m. Due to 

this, the set of Egs. (2) had to be reduced to one equation. Thus, the final form of the new 
model consists of two coupled, transcendental equations. It is also noted that apart from the 
edge conditions for the faces (also) some reasonable edge boundary conditions for the core 
have been satisfied within the new model. The edge conditions for the core, satisfied in the 
new model, correspond to the conditions employed in the papers [3,4], however, instead of 
the stresses the stress resultans have been equated to zero at the edges of the core (in the new 
model). The number of the final equations and inclusion of the edge boundary conditions for 
the core make the new model quite different than the previous models [1,2]. In order to verify 
the new model some numerical results were obtained and are compared with results predicted 
by other models, published in [5,6].  

It is noted that the assumption m= m was introduced in a simplified manner and checked 
numerically, by the present author, in paper [7]. However, it was done without a theoretical 
justification. It is an aim of the paper to supply the theoretical justification for the assumption 

m= m. Details are given in sections 3 and 4. The local linear elastodynamics approach is 
worthwhile (to develope it) since it can be easily applicable for the analysis of more advanced 
sandwich structures conisting of more than three layers. Such a possiblity and application to a 
five-layer sandwich strip was presented in [7].

The new model is presented here as follows. All the equations and conditions are listed in 
section 2. Four new solutions to the local equations of motion of the linear elastodynamics, 
derived and applied here by the present author, are described in section 3. In section 4 the 
total displacements and stresses within the C-C structure are presented. Some numerical 
results and comparisons as well as a comment are given in section 5. Section 6 contains some 
conclusions.
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2 EQUATIONS SATISFIED BY THE NEW MODEL 
The structure considered in the paper is shown in Fig. 1. It is assumed that the U-inserts 

(sometimes called as C-profiles) are much stiffer than the faces. The gap occuring between 
the profiles and the core means that the normal and shear stresses at the ends of the middle 
layer are equivalent to zero.

                                                  L/2                   z 

                        c                 gap                                                      c               gap              h3

   U-insert 1                                                                                                       U-insert 2 

          x
h2

                                                              L                                                                                   h1

Figure 1: Geometry of the sandwich structure considered in the paper. 

The following boundary conditions are satisfied, in the present paper, for the structure. 
Both in-plane and the out-of-plane displacements as well as slopes of the faces are equated to 
zero at the outer corners of the inserts, i.e., 

2/3,2/1,02/,
2

,0)2/,2/(,0)2/,2/(

222
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It is noted that the edge boundary conditions (4) are the same as in [3,4]. Boundary 
conditions at ends of the core are as follows,  
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As far as the present author knows, and it is stressed here, both the conditions (3) and (4) at 
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the ends of the sandwich strip are quite new within the local linear elastodynamics approach. 
The conditions introduced here are very close to the boundary conditions for the realistic 
structure.

Throuh-the-thickness boundary conditions and compatibility equations are as follows,

..2,1],[],[
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The equations of motion, satisfisfied by the stresses and displacements within each layer 
separately, are as follows,  

.3,2,1,3,1,,)( 22 jlktux ljjljkl (6)

Apart from (3-6) the Hooke law is satisfied in the model considered. To satisfy the above 
edge boundary conditions some new solutions of the equations of motion have been derived 
by the present author and composed with the former solutions outlined in the appendix. 

3 NEW SOLUTIONS TO THE EQUATIONS OF MOTION 
The solutions (i.e., displacement and stress fields) found lately by the present author are 

denoted with IIIT, IIIH, IVT and IVH where T means solutions with trigonometric functions 
of the space variable x while H denotes solutions with hyperbolic functions of the variable x. 

12m, r12m are given in the Appendix, constants 2CIII, 2DIII, … with the subscripts are unknown. 
The solutions refer to the core but one may introduce the same (kind) solutions for the faces 
by replacing 12m with 11m (or 13m) and r12m with r11m (or r13m) - see later.

3.1 Vibrational solution IIIT 
The following displacements and stresses satisfy the 3D linear elastodynamics equations of 

motion and the Saint-Venant compatibility equations for the core,  
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The symbol m is defined in section 4, 12m, refering to the core, is defined in the appendix, 
the function XTm is defined in section 4. It is noted that the constant with the subscripts 2m is 
not necessary when flexural vibration of the symmetric (about the mid-plane) structure are 
considered. For an enough narrow structure the following approximations of the fields (7), 
(8), refering to the underlined factors, are valid and taken into the further consideration,
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3.2 Vibrational solution IIIH 
The following displacements and stresses satisfy the 3D linear elastodynamics equations of 

motion and the Saint-Venant compatibility equations for the core,  
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The symbol r12m, refering to the core, is defined in the appendix. It is noted that the 
constant with the subscripts 2m is not necessary when flexural vibration of the symmetric 
(about the mid-plane) structure are considered. For an enough narrow structure the following 
approximations of the fields (11), (12), refering to the underlined factors, are valid and 
applied in the further consideration,  
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3.3 Vibrational solution IVT 
The following displacements and stresses, again with the trigonometric functions of 

variable x appearing in (7-10), satisfy the 3D linear elastodynamics equations of motion and 
the Saint-Venant compatibility equations for the core,  
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For an enough narrow structure the following approximations of the fields (15), (16), 
refering to the underlined factors, are valid and taken into the further consideration,
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3.4 Vibrational solution IVH 
The following displacements and stresses, again with the hyperbolic functions of variable x 

appearing in (11-14), satisfy the linear elastodynamics equations of motion and the Saint-
Venant compatibility equations for the core,  

,....,3,2,1,/2

,)()cos(,)](/)[sinh(

,0,)()cos()())(cosh(

2
2

2
22

2

21
2

21
2

mp

tTypXDzu

utTypxXDzu

mmmH

mmHxTm
IV
mmmx

ymmHHm
IV
mmz

(1
9)

1075



S. Karczmarzyk 

....,3,2,1,)(])sin([)())(cosh(

,)()]sin([,)](/)[sinh(

,0,,)()cos()())(sinh(2

221
2

2

221
2

2

21
2

2

mtTyppxXDz

tTyppXDz

tTypxXDz

mmHmHHm
IV
mmyz

mmHmHxHm
IV
mmmxy

zxyyxxzzmmHHm
IV
mmmxx

(20)

For an enough narrow structure the following approximations of the fields (19), (20), 
refering to the underlined factors, are valid and applied in the further consideration,
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It is noted that in the solutions denoted with superscript III the normal stress zz is 
equivalent to zero while in the solutions with superscript IV the shear stress zx is equivalent 
to zero. The functions XTm, XHm are defined in the next section.

4 TOTAL FIELDS WITHIN THE FACES AND CORE 
The displacements in the faces are composed of two ingredients as follows [1,2],  
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It is noted that assuming Tm(t) 1 in expressions (23) one obtains the kinematic 
assumptions applied in [3,4]. The functions of variable x refer to the case of symmetric modes 
of vibration. When the unsymmetric (about the mid-span) modes of vibration are analysed the 
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'cos' and 'cosh' functions must be replaced by the 'sin' and 'sinh' functions, respectively. The 
functions dependent on the variable z, derived eg. in [1,2], are defined in the appendix. One 
can see that each of the solutions denoted by superscripts I and II contains four unknown 
constants, which can be calculated after solving the eigenvalue problem. Thus, the total fields 
within the faces contain eight unknown constants.  

The displacements in the core are composed here of all the functions denoted with 
superscripts I, II and III, IV defined above. Obviously, all the functions can be arranged into 
two groups, one with the XTm(x) (and its derivative) and the other group with the XHm(x) (and 
its derivative). The total fields within the core contain, in a general case, sixteen unknown 
constants. In the case of symmetry of the structure about the middle plane the number of 
unknown constants for the core can be reduced to eight. Let us conclude finaly that the total 
displacement and stress fields within the whole structure symmetric about the middle plane 
contain sixteen unknown constants.

It is explained here that all through-the-thickness boundary conditions and the 
compatibility equations are satisfied separately by the ingredients containing the 
trigonometric functions of the space variable x and (separately) by the ingrednients containing 
the hyperbolic functions of variable x. For the classical three-layer sandwich structure it 
means, in a general case, twenty four equations while for the structure symmetric about the 
middle plane it means only twelve equations for the total fields.  

Thus, to satisfy the edge boundary conditions (3), (4) additional four equations are needed 
and therefore the following relationships are introduced,
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where symbols appearing in the parentheses of Eqs (25) denote the functions included in 
formulas for the stresses occuring in (4) dependent (only) on the space variable z.  

As far as the present author knows, the Eqs (25) are introduced here for the first time 
within the local linear elastodynamics. It is noted that assumption (24), together with (23) and 
(3), implies the following relationships,  
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The equation (27) enables us to calculate the parameter m recognized as that one resulting 
from the Bernoulli-Euler beam theory.  

5 NUMERICAL RESULTS 
In Table 1 eight eigenfrequencies for the C-C structure with the data given in [5-7], 

predicted by the new model, are presented. The eigenfrequencies are denoted by SK. Apart 
from the new results the reader will find in Table 1 eigenfrequencies existing (for the 
structure) in the literature i.e., SKs - predicted by the simplified (efficient) model presented in 
[7], Exp - obtained experimentally [5], RAV - predicted by the model [5], VSS - obtained 
acording to the model given in [6].  

Vibr. mode (m) 1(s) 2(a) 3(s) 4(a) 5(s) 6(a) 7(s) 8(a) 
SK       [rad/s] 245.94 677.97 1329.1 2197.2 3282.4 4585.0 6105.4 7844.1
SKs     [rad/s] 220.50 597.91 1144.0 1834.7 2645.1 3551.4 4537.4 5568.3
Exp     [rad/s] - - 1165.5 1761.2 2509.5 3362.8 4277.0 5448.8
RAV    [rad/s] 229.88 617.81 1173.8 1872.0 2685.6 3596.0 4575.3 5618.7
VSS    [rad/s] 217.40 584.96 1113.4 1776.9 2552.9 3419.9 4358.6 5353.3

Table 1: Eigenfrequencies of the sandwich C-C structure according different models. 

The percentage differencies between the results predicted by different models are 
presented in Fig. 2.
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Figure 2: Percentage differencies between eigenfrequencies from Table 1. 

It is seen from Table 1 and in Fig. 2 that the new 2D model gives higher eigenfrequencies 
than the models [5,6]. The eigenfrequencies SK are also higher than the experimental data 

Exp from [5]. (Unfortunately, the eigenfrequencies of the first symmetric mode and first 
unsymmetric mode of vibration are not explicitely given in [5,6].). However, the analysis in 
Fig. 2 shows clearly that the models [5,6], as well as the simplified (efficient) model [7], 
predict inaccurately the lower, both symetric and unsymmetric, eigenfrequencies of the 
structure. Therefore, we can say that the new 2D model predicts accurately the 
eigenfrequencies of the lower modes of vibration.  

6 CONCLUSIONS 
A new 2D model for the sandwich structure with edge stiffeners was presented and 

assesed. Most probably, the model predicts accurately eigenfrequencies of lower modes of 
vibration of the C-C sandwich structure with the edge stiffeners. It is evident that models [5-
7] predict much lower eigenfrequencies of the lower modes of vibration of the structure than 
the real (experimental) values. Since the percentage differencies between predictions of the 
new model and the other models for the higher modes of vibration are high it is concluded 
that the new model must be more extensively investigated.  
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APPENDIX 
Functions of the space variable z denoted by superscript I occuring in Eqs (23) [1,2], 
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Functions of the space variable z denoted by superscript II occuring in Eqs (23) [1,2], 
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The following relationships are valid both for the functions (A1) and (A2),  
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Summary. A systematic approach to verify the applicability of neglecting the in-plane core
stiffnesses for the prediction of the structural sandwich behaviour is presented. This approach
is based on the comparison between the computation results of standard as well as specific finite
elements enabling the estimation of the computation deviation occuring due to neglecting the
mentioned stiffnesses.

1 INTRODUCTION

Sandwich structures with low strength foam cores are increasingly being used due to the
achievable high bending stiffness to weight ratio as well as due to the low cost of these foam
materials. In comparison to honeycomb cores, foam cores approximately exhibit the same
material characteristics in the out-of-plane as well as in the in-plane directions of a sandwich
plate. However, analytical solutions which are based on the assumption that the in-plane core
stiffnesses can be neglected are also applied to sandwich structures consisting of these cores ma-
terials. For honeycomb cores, the assumption of neglectable in-plane core stiffnesses is usually
applicable due to the high ratio between the out-of-plane to the in-plane material characteristics
(cp. theoretical ratio according to [1, pp. 169-172]). For sandwich structures based on foam
cores, it is argued that the stiffnesses of the face sheets are much higher than those of the cores.
Therefore, the strain energies due to the in-plane core deformations might be neglected (cp. for
example [2, pp. 39-48] or [3, pp. 1-13]). These premises are fulfilled for many sandwich mate-
rials. Nevertheless, the question arised for which material combinations, i. e. to which ratios of
the face sheet to the core stiffnesses the described approach is still applicable, in particular for
sandwich structures consisting of foam cores.

In order to systematically verify the applicability of neglectable in-plane core stiffnesses for
the determination of the structural behaviour of sandwich structures composed of foam cores,
the Sandwich Master Diagram according to [4] is used. Based on that, the structural sandwich
behaviour is described by a dimensionless coefficient enabling the estimation of the sandwich
behaviour between its extreme limits of being very stiff to very flexible under transverse shear
loading.
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For selected points in the Sandwich Master Diagram, finite element analyses are performed
using the finite element programme MSC.Marc R© (MSC.Software Corporation, 2 MacArthur
Place, Santa Ana, CA 92707, USA) as well as specific finite element formulations implemented
in MSC.Nastran R© (MSC.Software Corporation, 2 MacArthur Place, Santa Ana, CA 92707,
USA). Among other things, the developed finite elements are formulated on the basis of a
semi-analytical core displacement field. The core displacement pattern is set up using a three-
dimensional (3D) material law neglecting the in-plane core stiffnesses and partly solving the
underlying differential equations of the sandwich core (cp. deformation field of finite element
formulations according to [5] or [6]). The computation results obtained by these finite elements
are comparable to numerical exact or completely analytical solutions (cp. for example [7] or
[8]). For the selected points in the Sandwich Master Diagram, the analyses using the specific
finite elements are compared to the ones carried out using the programme MSC.Marc R©. These
computations are partly based on a detailed idealisation of the sandwich structures with con-
tinuum elements without any neglect of core stiffnesses. In this case, the computation results
consequently converge in the theoretical case of an infinite number of elements against the exact
solution of continuum mechanics. As a result, the range of applicability of the described sand-
wich model assumptions can be estimated for a variety of material combinations with respect to
the selected points in the Sandwich Master diagram, in particular for sandwich structures with
foam cores exhibiting very stiff to flexible behaviour under shear loading.

2 FINITE ELEMENTS BASED ON THREE-LAYER SANDWICH MODEL

The finite sandwich elements are defined using a three-layer sandwich model subdividing the
sandwich into the face sheets and the core as individual components. The idealised geometry
of the finite elements is illustrated in Figure 1. The face sheet values are marked by f1 and f2
for the bottom resp. top face layer whereas the ones of the core are signed with the suffix c. To
simplify matters, the element geometry is selected to be rectangular with length a and width b.
Furthermore, the face sheet thicknesses df1 as well as df2 and the core heigth are constant at
each element node.

The finite element matrices are derived based on the principle of virtual displacements ac-
cording to [9, pp. 186]:

δU − δW =

∫
�σT δ�εl dV = δ�uT �F (1)

where δU is the virtual strain energy, δW is the virtual work of the external forces and �ε, �σ, �F
as well as �u is the strain, the stress, the force resp. the displacement vector. δ�u indicates virtual
nodal displacements.

The integral in regard to Equation (1) is solved separately for its individual components. The
principle of virtual work yields in the linear range:

∫
�σT δ�εl dV =

∫ 2∑
i=1

δ�εT
fiQfi�εfidV +

∫
δ�εT

c Qc�εcdV = δ�uT

(
2∑

i=1

Kfi + Kc

)
�u (2)
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Face sheet idealisation:

Core:
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Figure 1: Geometry of developed finite elements and degrees of freedom of face sheets exemplary illustrated at
node 3

where Qfi is the laminate elasticity matrix of face sheet fi, Qc is the core elasticity matrix, Kfi

is the linear stiffness matrix of face sheet fi and Kc is the linear stiffness matrix of the core.
The face sheet idealisations of each developed finite sandwich element are identical and are
modelled based on the Reissner-Mindlin theory. With respect to the four-node face sheet plate
element with five degrees of freedom per node in Figure 1, the linear strain vector is set up with
an assumed transverse strain interpolation according to [10]. The laminate elasticity matrix Qfi

is of order eight. The components corresponding to classical laminate theory are determined
based on [11] whereas for the transverse shear stiffnesses it is assumed that the shear stresses
vary linearly vanishing at the free edges of the sandwich. Based on that approach, the linear
stiffness matrix Kfi composed of Qfi and �εfi is clearly defined (cp. [12] for more details).

In the following, three different element formulations are described. They can be distin-
guished by the formulation of the sandwich core. The first two are based on a core displace-
ment interpolation according to [6] resp. [12] where the displacement pattern is developed based
on the analytical solution of the underlying differential equations of the core in the through-
thickness direction of the sandwich. The corresponding sandwich elements are formulated in
the subsequent paragraph whereas the third core formulation using usual polynomial interpola-
tion functions is described in subsection 2.2.

2.1 ELEMENTS BASED ON ANALYTICAL SOLUTION OF CONSTITUTIVE EQUA-
TIONS

The interpolation functions of the core displacement pattern are determined by solving an-
alytically the underlying differential equations of the core in the through-thickness direction.
The differential equations are set up using a 3D material law neglecting the in-plane Young’s
moduli Exc

and Eyc
and the in-plane shear modulus Gxyc

of the core. As a result, the in-plane
core stresses vanish (σxc

, σyc
and γxyc

≈ 0), and the core displacement interpolation is defined
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in the through-thickness direction according to [6] by:

uc(x, y, z) = a0(x, y) + a1(x, y) · z + a2(x, y) · z2 + a3(x, y) · z3 (3)

vc(x, y, z) = b0(x, y) + b1(x, y) · z + b2(x, y) · z2 + b3(x, y) · z3 (4)

wc(x, y, z) = c0(x, y) + c1(x, y) · z + c2(x, y) · z2 (5)

where uc as well as vc are the in-plane displacements in the x- resp. y-direction of the element
coordinate system and wc is the out-of-plane displacement.

The coefficients ai(x, y), bi(x, y) and ci(x, y) of the displacement pattern depend on the
selected state variables of the core. If the continuity conditions between the face sheets and the
core are considered, these state variables can be clearly expressed through the introduced face
sheet degrees of freedom and an assumption of the core midplane displacement wc(x, y, z = 0).

Based on a perfect displacement continuity condition between the face sheets and the core,
the state variables of the core can be clearly determined by:

uc(x, y, z = −hc

2
) = uf1 +

df1

2
· θyf1

, uc(x, y, z =
hc

2
) = uf2 − df2

2
· θyf2

(6)

vc(x, y, z = −hc

2
) = vf1 − df1

2
· θxf1

, vc(x, y, z =
hc

2
) = vf2 +

df2

2
· θxf2

(7)

wc(x, y, z = −hc

2
) = wf1, wc(x, y, z =

hc

2
) = wf2 (8)

and by an out-of-plane deformation assumption of the core midplane with four additional nodal
displacements - each with 1 degree of freedom according to Figure 2.I - resulting in a bilinear
pattern.

Based on the afore-mentioned displacement field in the core, two linear stiffness matrices
are formulated for the core which can be distinguished by the definition of the core elasticity
matrix Qc as well as the strain vector �εc. Together with the above-mentioned formulation of
the face sheets, the complete finite sandwich element is clearly described. Each consists of 44
degrees of freedom. In the following, both elements formulations are sketched more detailed.

2.1.1 CONSISTENT NEGLECT OF CORE MATERIAL CHARACTERISTICS

For the first finite element formulation, the neglect of the in-plane core material character-
istics is also considered during the determination of the stiffness matrix Kc (not just for the
derivation of the core deformation pattern according to the Equations (3) to (5)). If the material
as well as the element coordinate system coincide, the neglect of core material characteristics
leads to the following core elasticity matrix and strain vector:

Qc =

⎡
⎣ Ezc

0 0
0 Gxzc

0
0 0 Gyzc

⎤
⎦ and �εT

c =

(
∂wc

∂z
,
∂uc

∂z
+

∂wc

∂x
,
∂vc

∂z
+

∂wc

∂y

)
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where Ezc
is the Young’s modulus in the z-direction and Gxzc

as well as Gyzc
are the shear

moduli in the through-thickness planes of the core (first index of shear modulus marks the
direction of the shear stress and the second one the corresponding plane on which the shear
acts). This finite element formulation is subsequently called CONSISTENT.

2.1.2 3D CONTINUUM CORE MODEL FOR STIFFNESS MATRIX DERIVATION

In comparison to the definition in paragraph 2.1.1, the second finite element formulation is
based on a 3D contiuum model of the core used during the calculation of the stiffness matrix
Kc, i.e. the displacement field is selected with respect to the Equations (3) to (5) but the stiffness
matrix is set up by considering a complete 3D continuum model for the core. In this case, the
elasticity matrix is of order six. It is defined by:

Qc =

[
Qc1 0
0 Qc2

]
with Qc1 =

⎡
⎢⎣

1
Exc

−νxyc

Eyc

−νxzc

Ezc

−νxyc

Eyc

1
Eyc

−νyzc

Ezc

−νxzc

Ezc

−νyzc

Ezc

1
Ezc

⎤
⎥⎦
−1

, Qc2 =

⎡
⎣ Gxzc

0 0
0 Gyzc

0
0 0 Gxyc

⎤
⎦

(9)
Again, the material and the element coordinate system are equal to simplify matters. The cor-
responding strain vector is consequently determined through:

�εT
c =

(
∂uc

∂x
,
∂vc

∂y
,
∂wc

∂z
,
∂uc

∂z
+

∂wc

∂x
,
∂vc

∂z
+

∂wc

∂y
,
∂vc

∂x
+

∂uc

∂y

)
(10)

In the following, this finite element formulation is called SEMI-CONSISTENT.

1
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Figure 2: Nodal degrees of freedom of the core of the elements CONSISTENT and SEMI-CONSISTENT (left
part) and of the element POLYNOMIAL (right part) exemplary exemplary illustrated at core node 3
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2.2 CORE INTERPOLATION WITH USUAL POLYNOMIALS

For the third element formulation, a usual displacement pattern with polynomials for the
core is used. The core deformations uc, vc and wc are assumed to vary cubically in the through-
thickness direction:

uc(x, y, z) = a0(x, y) + a1(x, y) · z + a2(x, y) · z2 + a3(x, y) · z3

vc(x, y, z) = b0(x, y) + b1(x, y) · z + b2(x, y) · z2 + b3(x, y) · z3

wc(x, y, z) = c0(x, y) + c1(x, y) · z + c2(x, y) · z2 + c3(x, y) · z3

The coefficients ai(x, y), bi(x, y) and ci(x, y) are determined in the usual way through the per-
fect continuity conditions between the face sheets and the core as well as by the introduced
degrees of freedom of the core regarding Figure 2.II (8 additional core nodes each with 3 de-
grees of freedom).

As the selected displacement field in the core agrees with standard displacement-based finite
element approaches, the linear stiffness matrix of the core is set up using the 3D continuum
modelling approach. As a consequence, the stiffness matrix Kc is defined by the matrix opera-
tion according to Equation (2) with the elasticity matrix Qc and the strain vector �εc with regard
to Equation (9) resp. (10). Together with the above-mentioned definitions of the face sheets,
the finite element approach is clearly defined. It is described by 64 degrees of freedom. In the
following, this finite element formulation is called POLYNOMIAL.

3 IMPLEMENTATION OF DEVELOPED ELEMENTS

The derived stiffness matrices of the developed finite elements have been implemented into
the finite element program Nastran using a DMAP-program according to [13] and a Fortran77-
routine. Based on this approach, the DMAP-program reads the problem formulation through
the standard Nastran bulk data set. Furthermore, it subsequently controls the determination
of the single element matrices by calling the mentioned Fortran-routine and the solution of
the resulting system matrices. The computation results are finally stored in ascii-format for
subsequent postprocessing.

4 MARC-IDEALISATIONS FOR VERIFICATION

The developed finite sandwich elements are verified based on computations carried out using
the programme MSC.Marc R©. Three different Marc-idealisations are utilised. These models are
set up either with a combination of shell and solid elements or completely with solid or shell
elements only. The Reissner-Mindlin theory is applied for the shell elements.

For the sandwich idealisations consisting of shell and solid elements, the face sheets are
modelled by shells which exihibit assumed transverse shear effects. Each interpolation function
is bilinear (element 75 according to [14, pp. 444-449]). The core is idealised by eight node
solid elements based on trilinear trial functions (element 7 with regard to [14, pp. 127-132]).
The latter element type is also used for sandwich models which are only set up based on solid

1087



M. Linke and H.-G. Reimerdes

idealisations. An orthotropic material law is utilised for all core elements. If the sandwich is
only modelled by shell elements, the above-mentioned shell type 75 is applied. The three afore-
mentioned idealisations are referred to as Marc7-75 combination of shell and solid elements),
Marc7 (complete solid idealisation) and Marc75 (complete shell element model).

5 VERIFICATION

The developed finite elements are systematically verified for linear statics of orthotropic
sandwich panels. In order to verify their applicability, the Sandwich Master diagram with re-
spect to [4] is used. On the basis of this diagram, the structural behaviour of sandwich appli-
cations is described by a dimensionless coefficient r enabling the estimation of the mechanical
behaviour between its extreme limits of being very stiff to very flexible under transverse shear
loading. It is applicable to linear statics and linear stability problems.

Section A-A:

y

xb

A A

a

q
df1

df2 hc
a/2

b/2

Figure 3: Sandwich panel under uniquely distributed load q

The investigated problem is shown in Figure 3. An uniquely distributed load of q = 0, 1 MPA
acts on the top face layer of the panel. The structure is simply supported along its edges, and the
dimensions of the sandwich plate amount to a, b = 300 mm. Additional geometry and material
data used during the verification can be derived on the basis of the Sandwich Master diagram 4
and Table 1. In general, three different core to face sheet thickness ratios are analysed (cp.
Figure 4) The introduced coefficients are determined with respect to [4]:

r =
1 +

(
1 − Bf

Bges

)
π2 Bges

c2 Bτ

1 +
(
1 − Bf

Bges

)
π2 Bf

c2 Bτ

with Bf =
Ef b d3

f

6
,

Bges = Bf +
Ef b df (hc + df )

2

2
, Bτ =

Gc b (hc + df )
2

hc

and
1

c2
=

1

a2
+

1

b2

where Ef is the Young’s modulus of the face sheets, and Gc is the shear modulus of the core.
As the face sheets are assumed to be identical with df = df1 = df1, the stiffnesses of the face
sheets are summed up, and the resulting characteristics are marked by the suffix f .

In the following, the computation results of two numerical investigations are described. In
the first analysis, the premises are approximately fulfilled under which the core displacement
field of the finite element formulations according to paragraph 2.1 is derived, i. e. the stiffnesses
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Figure 4: Sandwich Master diagramm with regard to [4]

of the face layers are significantly higher than the ones of the core. The corresponding point
in the Sandwich Master diagram to this problem is located in section 3 of Figure 4. Based
on the findings of the afore-mentioned problem with approximately ideal face sheet to core
stiffnesses, a systematic variation within the Sandwich Master diagram is performed in the
second investigation. The points considered in the Sandwich Master diagram are located in the
sections 1 to 12 intersecting the indicated curves of constant face sheet to core thicknesses. As a
consequence of this investigation, the range of applicability of the introduced assumptions can
be estimated for sandwich structures consisting of a variety of core materials, in particular, of
foam cores.

5.1 APPROXIMATELY IDEAL FACE SHEET TO CORE STIFFNESSES

The investigated sandwich structure is clearly defined by the intersection of the curve for
df

hc+df

= 0.0204 resp. hc = 24 mm with section 3 in the Sandwich Master Diagram. In that
case, the stiffnesses are significantly higher than the ones of the core.

A quarter of the sandwich panel is idealised due to the doubly symmetric problem. The
subsequently described computation results are obtained for regular meshes with convergence
rates of the maximum displacement of the upper face sheet which are lower than 0.1 %.

The Marc-analyses are carried out using the idealisations described in paragraph 4. The
model Marc7 completely consisting of solid elements is idealised based on two different ma-
terial laws of the core. The results which are referred to by Marc7neg are obtained for a core
material law with neglected in-plane core material characteristics, i. e. the in-plane values are
almost set to zero. This approach corresponds to the above described element formulation
CONSISTENT. In comparison to that, Marc-results indicated by Marc7all are generated based
on the full 3D continnum model for the core. No material characteristics are neglected.
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df

hc+df

hc
Bges

Bτ c2
r Ef νf Ec

Section [%] [mm] [−] [−] [ N
mm2 ] [−] [ N

mm2 ]

9.09 5 0.015 1.149 1479.9 0.3142 7.7285
S1 5.56 8.5 0.015 1.149 1479.9 0.3142 13.1160

2.04 24 0.015 1.150 1479.9 0.3142 37.0000
9.09 5 0.093 1.911 9069.6 0.3142 7.7285

S2 5.56 8.5 0.093 1.915 9069.6 0.3142 13.1158
2.04 24 0.093 1.918 9069.6 0.3142 37.0000
9.09 5 0.233 3.269 22674 0.3142 7.7285

S3 5.56 8.5 0.233 3.285 22674 0.3142 13.1160
2.04 24 0.233 3.294 22674 0.3142 37.0000
9.09 5 0.800 8.686 22674 0.3142 2.2470

S4 5.56 8.5 0.800 8.816 22674 0.3142 3.8133
2.04 24 0.800 8.885 22674 0.3142 10.7573
9.09 5 1.976 19.41 56000 0.3000 2.2470

S5 5.56 8.5 1.976 20.08 56000 0.3000 3.8134
2.04 24 1.976 20.44 56000 0.3000 10.7573
9.09 5 6.000 51.67 210000 0.3000 2.7748

S6 5.56 8.5 6.000 56.71 210000 0.3000 4.7090
2.04 24 6.000 59.72 210000 0.3000 13.2840
9.09 5 20.00 128.4 210000 0.3000 0.8324

S7 5.56 8.5 20.00 164.8 210000 0.3000 1.4127
2.04 24 20.00 193.1 210000 0.3000 3.9853
9.09 5 52.00 213.1 210000 0.3000 0.3202

S8 5.56 8.5 52.00 336.4 210000 0.3000 0.5433
2.04 24 52.00 480.0 210000 0.3000 1.5328

Table 1: Isotropic material characteristics selected for the face sheets and the core (νc = 0, 4231)

The computation results are illustrated in Table 2 and in the Figures 5 and 6. As the results of
the calculations based on the element type SEMI-CONSISTENT agree quite well with the ones
of the type POLYNOMIAL (deviations of the shown displacement and stress values are lower
than 0.1 %), just the results of the idealisations CONSISTENT and SEMI-CONSISTENT are
shown. Furthermore, the results of the computations based on the models Marc7-75 and Marc75
are only illustrated in Table 2 to simplify matters, too.

The good agreement between the computation results based on the element types SEMI-
CONSISTENT and POLYNOMIALS can be identified in Table 2. The deviations of the dis-
placement and the stress values to the calculations of MSC.Marc R© are almost the same for
both idealisations. Moreover, it can be seen that the results of the developed finite elements
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Marc7all Marc7neg

Δwf2 in % Δσxf2
in % Δwf2 in % Δσxf2

in %

Marc75 1.15 2.63 -0.20 -1.29
Marc7-75 0.04 0.02 -1.29 -3.80
CONSISTENT 1.35 4.01 0.00 0.04
SEMI-CONSISTENT -0.01 -0.03 -1.34 -3.85
POLYNOMIALS -0.01 0.02 -1.33 -3.80

Table 2: Deviation between the computation results of the Marc-analyses Marc7all as well as Marc7neg and
calculations based on the developed elements (for model Marc7all all core material characteristics are considered,
for idealisation Marc7neg the in-plane core material values are neglected) where Δwf2 is the deviation of the z-
displacement and Δσxf2

is the deviation of the normal stress in the global x-direction each at the plate middle of
the upper face sheet
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Figure 5: Displacement in the middle of the upper face sheet in z-direction

agree well with the Marc results if the core material laws are selected to be approximately iden-
tical during the formulation of the stiffness matrix (CONSISTENT corresponds to Marc7neg

and SEMI-CONSISTENT as well as POLYNOMIAL equal Marc7all). In particular, this is the
case for the results of the derived elements SEMI-CONSISTENT as well as POLYNOMIAL
which agree well with the related idealisation Marc7all enabling a realistic description of the
investigated isotropic foam core material. Furthermore, it has to be mentioned that the results
based on the element type CONSISTENT with neglected in-plane core stiffnesses still agree
well with the ones of the model Marc7all although the introduced core material laws differ be-
tween the models. The deviations of the shown displacement and stress values to the model
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Marc7all just amount to 1.3 % resp. 4%. This good agreement with regard to Table 2 can also
be observed over the whole sandwich plate for the illustrated values (cp. the Figures 5 and 6).
As a consequence, the consideration of the in-plane core stiffnesses is of minor importance for
the analysed sandwich structure if the face sheet to core stiffnesses are approximately ideal, i. e.
for the selected point in the Sandwcih Master diagram.
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Figure 6: Normal stress σxf2
in the middle of the upper face sheet

The Marc-results obtained by the computations based on shell elements with assumed trans-
verse shear strains (Marc75) agree with the ones of the models Marc7all and Marc7neg as it is
the case for the idealisation with the element type CONSISTENT (cp. Table 2). With the sim-
ple element technology Marc75, good agreement is achieved for the investigated point in the
Sandwich Master diagram although a small number of degrees of freedom is used. However,
it has to be mentioned that this element technology is not appropriate if local phenomena like
peeling stresses in the core or flexible core behaviour in the through-thickness direction has to
be adequately predicted.

Almost the same results are determined for the Marc7-75 idealisation (with face sheet ele-
ments considering transverse shear strains and solid elements in the core) as it is the case for
the models based on the element types SEMI-CONSISTENT and POLYNOMIALS. This is due
to the fact that the structural sandwich behaviour is sufficiently predicted by the selected dis-
placement fields in the core and that comparable core material laws are used during the stiffness
matrix formulation.

To summarise, good agreement can be achieved between the computation results based on
the described finite elements and the ones of realistic finite element idealisations. The latter ones
are carried out with the program system MSC.Marc R©. Furthermore, the observed deviations
are mainly caused by selecting different core material laws for the determination of the stiffness
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matrix. Therefore, the core deformation pattern is sufficiently described by the analytically de-
rived core displacement pattern (elements CONSISTENT and SEMI-CONSISTENT) enabling
the reduction of the degrees of freedom in comparison to standard finite element idealisations
for the analysed the static problem.

5.2 VARIED FACE SHEET TO CORE STIFFNESSES

In order to verify the applicability of the developed elements, the relevant areas in the Sand-
wich Master diagram are analysed with the derived elements and with idealisations based on the
program system MSC.Marc R©. The considered points are defined in Figure 4 by the intersection
of the curves with constant face sheet to core thickness with the illustrated sections 1 to 8 ( Bges

Bτ c2

is constant). The investigated sandwich structure is described in Figure 3 and in Table 1. As the
applied face sheet elements are based on the assumption that the face layers are thin, the ratio
of the face sheet to the core thickness is limited to 10 % (df

hc

≤ 0.1 leads to df

hc+df

≤ 0.0909).
Again, a quarter of the sandwich panel is idealised due to the doubly symmetric problem.

The applied finite elements (CONSISTENT, SEMI-CONSISTENT and POLYNOMIAL) agree
with the ones used in the preceding paragraph. The Marc-idealisations Marc75 and Marc7
according to section 4 are utilised.

In the following, the computation results are compared to each other for the maximum de-
flection at the middle of the upper face sheet. The results are determined for regular meshes
with convergence rates of the maximum displacement that are lower than 0.1 %. The results
are related to the ones of the idealisation Marc7 as the computation results of this model should
converge in the theoretical case of an infinite number of elements against the exact solution of
linear continuum mechanics. The deviations are shown in the Figures 7 to 9. As the models
based on the developed elements SEMI-CONSISTENT and POLYNOMIAL agree quite well,
just the values of type SEMI-CONSISTENT are illustrated to simplify matters.
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In the figures, it can be seen that the Marc75 computations (with no solid element idealisa-
tion of the core) exhibit increasing deviations with growing Bges

Bτ c2
in the areas D and E in the

Sandwich Master diagram (cp. in particular left diagram of the Figures 7 to 9). The devia-
tions grow with the flattening of the curves in the Sandwich Master diagram. This is due to
the fact that the face sheets increasingly act as independent, individual plates. Therefore, the
mechanical description of the sandwich based on a plate formulation considering transverse
shear effects leads to a growing error concerning the prediction of the structural behaviour in
the afore-mentioned areas in the Sandwich Master diagram.

The results of the idealisations with the element type CONSISTENT exhibit good agreement
with the calculations based on the model Marc7 in the analysed areas of the Sandwich Master
diagram. Greater deviations occur for low ratios of Bges

Bτ c2
and increasing core heights. This is due

to the fact that the sandwich acts more like a composite plate. Therefore, the bending stiffness
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of the core significantly contributes to the overall bending stiffness which is neglected for the
element formulation of the element type CONSISTENT.

With regard to the Figures 7 to 9, the deviations of the models based on the element type
SEMI-CONSISTENT are significantly reduced in comparison to the ones of the CONSISTENT
idealisations (results of SEMI-CONSISTENT and POLYNOMIAL models are approximately
the same). Every deviation referred to the Marc7 model is lower than 0.1 % for all investigated
points in the Sandwich Master diagram.

6 CONCLUSION

In general, the structural behaviour of sandwich panels can be predicted in the linear range
with sufficient precision on the basis of the developed finite elements. Greater deviations can
just be observed for the idealisations based on the element type CONSISTENT in the zone of
the Sandwich Master diagram where the sandwich plate increasingly acts like composite panel.
This is caused by neglecting the in-plane core material characteristics during the derivation of
the stiffness matrix. Nevertheless, the analytically determined core displacement pattern used
for the elements CONSISTENT as well as SEMI-CONSISTENT sufficiently describes the core
behaviour, i. e. the underlying theory of the derived finite elements is applicable to isotropic
core materials like foams for a wide range of sandwich structures.
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Summary.   A statistical study of 20 sandwich cored materials with varied fibre orientation 
and skin thickness is performed to determine the significance of variables in the sandwich 
including the Modulus of Residual Stiffness . The results show that  is statistically 
significant for all tested cores with 1 skin layer, and that the stiffness of the core materials is 
not significant in the analyses for 3 layers of skin. 

1   INTRODUCTION 

Figure (1) Sandwich core material test for modulus of Residual Stiffness 

A sandwich structure is defined by a bi-geometrical structure and sub-structure related by 
the Modulus of Residual Stiffness, . These two geometries interact with each other to modify 
the response of the whole. Typical test materials are shown in Figure (1).  Statistical analyses 
of parameters in modern sandwich construction should be presented in the context of the 
broader and more identifiable geometry of classical mechanics.   Many types of sandwich 
cores today would be classed as elastic foundations supporting the skins of the sandwich.   
Modern sandwich construction is mainly fiberglass skin bonded to various types of core 
materials.   These types of materials have been used predominately in the marine industry for 
the construction of small craft and structural components of ships.
    The usual definition of a sandwich assumes an integral bond between skins and core.   In 
this case, each material being of similar overall panel length and width dimensions, the skins 
and core are loaded in series, thus the same force is transmitted to each layer.   Single skin 
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composites, and by default sandwich construction, have been characterized principally by the 
stiffness and strength of the short fibers in the mat or in the skins and additionally for 
sandwich construction by the thickness of the core material.   However, when all the 
properties of the skin matrix and the residual stiffness of the core ( ) are taken into account, 
stress and deflection tests have shown that it is the softer materials – the matrix cushioning the 
FRP fibers and principally the light weight core material that conforms and bonds to the fibers 
and the skins that primarily affect the response. A key to the construction of sandwich material 
is then the statistical significance of sandwich core parameters including .

2.   BACKGROUND 

     In the last few years, a unified stress theory has been developed by Weissman-Berman [1-
9] to model typical sandwich core materials from rigid closed cell foam to end-grain balsa 
having continuous contact with the faces of a sandwich beam, as shown in Figure (2).   These 
core materials are considered to behave as elastic foundations for those skins.  The two 
geometry’s are related by the inclusion of  , a newly defined modulus of residual stiffness 
within the characteristic length of the beam or plate equation.    defines the elastic curve and 
is an integral part of the flexural elastic modulus of the sandwich to define the critical 
compressive stress at secondary yield.  The modulus of the residual stiffness is defined as the 
characteristic of the sub-structure, which is a core bounded by the equivalent skins.   
Therefore, a sandwich structure may be defined by a bi-geometrical structure and sub-
structure related by the Modulus of Residual Stiffness, .

Figure (2) Model of typical sandwich core materials 
3.   METHODOLOGY

    The object of this statistical study of 20 sandwich cored materials is to present the results of 
regression analyses to determine the significance of five principal components of sandwich 
structures: (1) alphapred (  predicted); (2) Eskin1 (the elastic modulus of the top skin – in 
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flexure); (3) t1 ( the thickness of the top skin); (4) tsand ( the thickness of the total sandwich 
material); and (5) Ecore ( the elastic modulus of the core material – in flexure).  All of these 
values are taken from an extensive database for a parametric and equally incremented number 
of skin layers for an extensive range of ten core materials, ranging from highly damped cores 
such as Airex and EPoly to very stiff cores such as Balsa, on a typical 2.54 cm core thickness 
[10].  The fibre in the sandwich skins varies from +-45 degrees to 0/90 degrees, yielding 20 
specimens for sandwich with one layer of skins and another 20 with three layers of skins.  It 
has been seen from experimental and correlated predictive data that the value of  goes to 
unity when the skins have five or more layers. 

3.1   Statistical Comparison of   Predicted to  Test Data 

       The initial analysis will determine the relationship of the variables ‘alphapred’ to 
‘alphatest’ to determine the normality of each distribution and the comparison of the predicted 
and tested valued of .   An initial analysis is performed using R for statistical computing for 
values of  . 
    The database values for the sandwich cored materials with one skin and three skins are 
summarized in Table (1,2) below.   The initial database variables include five principal 
components of sandwich structures: (a) ; (b) Eskin1 (the elastic modulus of the top skin – in 
flexure); (c) t1 ( the thickness of the top skin); (d) tsand ( the thickness of the total sandwich 
material); and (e) Ecore ( the elastic modulus of the core material – in flexure).   The first two 
analyses explore the normality of ‘alphapred’ (predicted values of  ) for one and three top 
skins respectively.  For both the predicted and tested values of  , the means and median are 
relatively close values, indicating the normality of the distributions.  These values are 
summarized below.

Table 1:  Summary of ‘alphapred’ values with 1 and 3 Top Skins

Table 2:  Summary statistics for ‘alphapred’ with 1 and 3 Top Skins

    From Figures (3) and (4), it can be seen that each variable can be considered normal from 
the histogram, the density plots and the normal quantile plots.    

                       Min               1st Quar         Median        Mean            3rd Quar        Max 
1 skin .01400 .03550 .05000 .05565 .07425 .12000 
3 skins .0360 .1350 .1755 .2250 .3125 .6100 

                                           Mean                              SD                             Variance 
1 skin .05565 .02762 .000763 
3 skins .22495 .14426 .020812 
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Figure (3) Exploratory Data Analysis Plots-alpha-1 Skin ( 45:0/90 Degrees)

Figure (4) Exploratory Data Analysis Plots-alpha- 4 - Skin( 45:0/90 Degrees)

    Then the values of the predicted and tested  are compared using the Welch Two Sample t-
test.  The null hypothesis is given below: 

100 :H       (1) 
The assumption is that the comparative means are equal to zero or not greatly different from 
zero.   The alternative hypothesis is given as: true difference in means is not equal to 0.    

10:aH                                                                  (2) 
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The results show that t = -0.0282, df = 37.96, p-value = 0.9777, with a 95 percent confidence 
interval of ( -0.01822594  -  0.01772594 ) and sample estimates of:

mean of x  mean of y  
   0.05565    0.05590        (3)

    The result of simply subtracting the means yield a result nearly zero, which is reflected in 
the value of  p = 0.9777.  The F test to compare two variances yields a p-value =  0.8895, 
while the ratio of variances = 0.93745.  In this test, the alternative hypothesis is accepted only 
if the true ratio of variances is not equal to 1.  Therefore the null hypothesis, accepting ratios 
nearly equal to 1 is accepted.   Therefore, the regression analyses are conducted using the 
predicted values of .
    It can now be seen that the predictive methodology for   accurately reproduces the test 
data.   This is extremely important for conducting future tests and for implementing tested 
results in engineering structural analysis.   The regression analyses are conducted using the 
predicted values of .

3.2 Statistical Linear Models and Multivariate “Loess” Models 

 Initially, multiple linear regression models are computed using S+ statistical computing 
methods [5], and finally multivariate ‘loess’ models are computed to determine the model 
response to the data.  The multiple linear regression models are computed using S+ statistical 
computing methods: 

niforxxxy ippiii ,...,2,1,,...,22110                (4) 
These linear models are then refit as multivariate ‘loess’ local regression models to determine 
the adequacy of the residual normality of the predictor variables and the model, where 
weighted least squares is used to fit linear or quadratic functions of the predictors at centers of 
neighborhoods.  The weighting function is given by  predicted.  There are no restrictions on 
relationships among predictors.  The model with one skin layer is given as:

loess (formula = Ecore ~ alphapred * t1)     (5)

where ‘Ecore’ is the elastic modulus of the core, ‘alphapred’ is the predicted  and ‘t1’ is the 
top skin thickness. There is a reduced span = 0.75.   The multiple 90.02R , indicating that 
90% of the variance is accounted for in the data.   The model for three skin layers is fit as:

loess (formula = t1 ~ alphapred * tsand)       (6)

where ‘tsand’ is the sandwich thickness.  There is a reduced span = 0.75.   The multiple 
98.02R  , indicating that 98% of the variance is accounted for in the data.  

4.  RESULTS
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The first model is linear and fit for the variable ‘Ecore’ (elastic modulus of the core) on 1 
top skin material.  The equation in S+ fitting the model on ‘Ecore’ is: 

)1~( talphapredEcoreformulalm      (6) 

Call: lm(formula = Ecore ~ (alphapred + t1), data = alpha1.df, na.action =
 na.exclude) 
Residuals:
   Min    1Q Median   3Q  Max
 -4542 -1372 -159.8 1633 4128 

Coefficients:
                   Value   Std. Error      t value     Pr(>|t|)
(Intercept)   33893.6867   12936.9460       2.6199       0.0179 
  alphapred  -52073.1730   19125.9032      -2.7227       0.0145 
         t1 -452324.7249  277762.0362      -1.6285       0.1218 

Residual standard error: 2341 on 17 degrees of freedom 
Multiple R-Squared: 0.3201
F-statistic: 4.002 on 2 and 17 degrees of freedom, the p-value is 0.03764

Analysis of Variance Table 

Response: Ecore 

Terms added sequentially (first to last) 
          Df Sum of Sq  Mean Sq  F Value     Pr(F)
alphapred  1  29334139 29334139 5.352874 0.0334633 
       t1  1  14532529 14532529 2.651886 0.1218165 
Residuals 17  93161234  5480073

Table 3: Linear Model = Sandwich with 1 Top Skin (fitted on Ecore)

       The fitted multiple R^2 for parameters fitted on ‘Ecore’ is 0.32.  In this model, the  
Pr(>|t|) = .0145 and is highly significant for the variable ‘alphapred’. Furthermore, it can be 
seen from the histogram that the residuals for this model has no gaps and is fairly normal.  
The quantiles of the standard normal fitted in Figure (5) are also nearly linear.  These 
quantiles are shown to be normally fitted on ‘Ecore’ in Figure (6).  In Figure (7), it can be 
seen that the fit of the residuals on ‘Ecore’ is well distributed. 
      In this linear model, the variable ‘alphapred’ is statistically significant, whereas the 
variable ‘t1’, the top skin thickness, is not.  In this model, the correlation coefficient R = 0.57, 
indicates the degree to which the two predictors (independent or X variables) are related to the 
dependent (Y) variable ‘Ecore’. 
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4.1 Fit of Variables in the Linear Model 

    These results are not surprising for a sandwich with only 1 layer of top skin.  In this case, 
the Modulus of Residual Stiffness, , has been mathematically predicted to be a controlling 
variable in sandwich construction with thinner skins.   However, these analyses show that 
the parameter ‘alphapred’ is statistically significant for all tested cores with 1 skin layer 
even if the fibres in the skin are +- 45 degrees or 0/90 degrees.   In short, this is true for 
highly ductile as well as very stiff core materials in the sandwich. 

4.2 Fitting a Multivariate Loess Model for 1 Top Skin 

    This linear model is then refit as multivariate ‘loess’ model to determine the adequacy of 
the residual normality of the predictor variables and the model, where weighted least squares 
is used to fit linear or quadratic functions of the predictors at centers of neighborhoods.  The 
weighting function is given by  predicted.  The model with one skin layer is given as:

loess (formula = Ecore ~ alphapred * t1)     (7)

Here ‘Ecore’ is the elastic modulus of the core, ‘alphapred’ is the predicted  and ‘t1’ is the 
top skin thickness. There is a reduced span = 0.75. In this multivariate Loess model, the 
multiple 90.02R , indicating that 90% of the variance is accounted for in the data. 

4.3 Linear Regression Model for 3 Skins

A reduced linear model is run for the parameters that have the highest Pr > | t |, for 
parameters selected from the full model.  For sandwich materials with one top skin, these 
parameters may be given as ‘alphapred’ and ‘Ecore’.   The linear model in terms of the 
observations is again given below: 

niforxxxy ippiii ,...,2,1,,...,22110                (8) 

And the equation in S+ is given below for 3 top skins: 

 )1~( talphapredtsandformulalm      (9) 

       In the fitted linear model, the multiple R^2 for parameters fitted on tsand equals 0.67.   
The Pr(>|t|) = .0000  is significant for the variable ‘t1’. The Pr(>|t|) = .2769 is not 
significant for ‘alphapred’ in skins with 3 layers in a linear additive model.  The quantiles of 
the standard normal are linear as shown in Figure (8).   The plot of the residuals shows 
excellent scatter as shown in Figure (9).   In this model, the ‘p’ value of the variable ‘t1’ is 
significant while the value of ‘alphapred’ is not.  In this model, the correlation coefficient R = 
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0.82, indicates the degree to which the two predictors (independent or X variables) are related 
to the dependent (Y) variable ‘tsand’.  
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Figure (9)  Fit of Residuals on tsand

    In this case, the model is refit on the parameter ‘t1’ for completeness of the analysis.   The 
histogram is nearly normal while the quantile fit of the residuals is reasonably well fit as 
linear, but not in the region -2 to -1, as shown in Figure (10).   In this case, the R^2 = 0.66, 
and the Pr(>|t|) = .4965 is again not significant for ‘alphapred’ in skins with 3 layers in a 
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linear additive model.   In this case, the results are accepted from the model fit on the 
parameter “tsand” for the linear additive model.  In either linear model for 3 layers of skin on 
the sandwich core, the fitted variables are ‘tsand’, ‘t1’ and ‘alphapred’.  The results for the 
refit model are shown below in Figure (10). 
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Figure (10) Histogram and Quantile Normal Fit of Residuals on t1

4.4 Fit of Variables in the Linear Models for 3 Top Skins 

    It has been shown that the correlation of predicted to tested deformation for 3-point load 
beam tests is dependent on an accurate evaluation of   included in the prediction equation.  
What is surprising is that the stiffness of the core materials (Ecore) is not significant in 
the full or the reduced analyses for a sandwich with 3 layers of skin for all tested cores 
even if the fibres in the skin are +- 45 degrees or 0/90 degrees. In short, this is true for 
highly ductile as well as very stiff core materials in the sandwich.   In these statistical 
analyses, the results show that for a sandwich with 3 layers of skin materials the relationship 
of ‘t1’ with ‘tsand’ governs.  This result is really a geometric relationship, rather than one 
primarily of materials properties. 

4.3 Fitting a Multivariate Loess Model for 3 Top Skins 

    The model for three skin layers is fit as: 

loess (formula = t1 ~ alphapred * tsand)       (3) 

where ‘tsand’ is the sandwich thickness.  There is a reduced span = 0.75.   The multiple 
98.02R  , indicating that 98% of the variance is accounted for in the data.  
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  Both Loess models fit the data very well, with the fit for 3 skin layers shown in Figure (11).    

Fitted : alphapred * tsand

t1
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     Figure (11) Non-linear and linear 3 skin response

5. CONCLUSIONS 

    The regression analyses in this report show a distinct difference in statistically significant 
variables for sandwich materials having 1 top skin and 3 top skins.   In defining the initial 
model, all variables with 1 or 3 skins formed a normal distribution.  It does not matter 
whether the skins have +- 45 degrees or 0/90 degree orientation of the fibres.  The initial 
model used to define ‘alphapred’ compared to ‘alphatest’ and all subsequent regression 
models show that the thickness of the skin governs, and not the fibre orientation.
    In the linear regression model for a sandwich with 1 skin layer, the analyses show that the 
parameter ‘alphapred’ is statistically significant for all tested cores with 1 skin layer even if 
the fibres in the skin are +- 45 degrees or 0/90 degrees, when fitted on ‘Ecore’. 
   In the linear regression model for a sandwich with 3 skins, the parameter ‘alphapred’ is not 
significant, and ‘t1’ is significant for the linear model fitted on ‘tsand’.   The data fit for the 
multivariate loess model, where ‘alphapred’ and ‘tsand’ are fitted on ‘t1’ show that 2R  is now 
0.98 which indicates a very good fit for this model.  The stiffness of the core materials (Ecore) 
is not significant in the full or the reduced analyses for a sandwich with 3 layers of skin for all 
tested cores even if the fibres in the skin are +- 45 degrees or 0/90 degrees.   In short, this is 
true for highly ductile as well as very stiff core materials in the sandwich.   
      In these analyses, there are some confirmed results, and some surprising results.  Perhaps 
the most surprising result is the lack of significance of the variable ‘Ecore’ in sandwich 
materials having 3 skin layers.  For the last 30 years, the assumption has been made that the 
structural integrity of the sandwich with 3 skins is dependent on the stiffness of the core 
materials.  In these statistical analyses, the multivariate Loess results for 3 skin layers show 
that ‘alphapred’, related to core damping, and 2 geometric parameters define the statistical 
response of these sandwich materials. 
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Summary: This paper presents a theoretical model for the dynamic analysis of modern 
sandwich panels with viscoelastic soft cores. The model combines the concepts of the Kelvin-
Voigt model of viscoelasticity with the concepts of the high-order sandwich theory and 
account for the strain rate effect through the shear and normal constitutive laws of the core. A 
solution procedure that combines time integration through Newmark's method with a 
numerical solution of the resulting equations in space is adopted. The capabilities of the 
proposed model are demonstrated through two numerical examples that shed light on the 
dynamic behavior of sandwich panels with viscoelastic soft cores.

1 INTRODUCTION 
The use of sandwich panels made of thin and stiff face sheets connected by a thick and 

compliant ("soft") core is widely used in aerospace constructions, as well as in many other 
structural applications. As such, sandwich panels are often subjected to dynamic loads. One of 
the main advantages of sandwich constructions, compared with monolithic ones, is the 
improved damping characteristics, which are mainly attributed to the viscoelastic behavior of 
the core material [1-8]. However, while the viscoelastic nature of the core damps the overall 
dynamic and vibratory response of the structure through the time domain, it also modifies the 
distributions and the magnitudes of the internal stresses and forces in the structure. In 
particular, it may modify, attenuate, or even magnify the stresses in the core layer and in the 
core–face sheet interfaces. These stresses play a critical role in the localized and global 
response of the panel, and in many cases, govern its failure mechanism. Hence, their 
magnification due to the viscoelastic effect and the influence of the viscoelastic nature of the 
core on the overall and localized dynamic behavior of the sandwich panel should be clarified.
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Many efforts were made to study the vibration response of sandwich panels with 
viscoelastic cores. Galucio et al. [1] used the finite element formulation assuming Euler-
Bernoulli's hypotheses for the elastic faces and Timoshenko's ones for the viscoelastic core. 
Wang et al. [2], Meunier and Shenoi [3], and Hunston et al. [4] investigated the free and 
forced vibration response of sandwich beams assuming that the core layer is stiff in the 
vertical direction and deforms in pure shear only. Pradeep et al. [5] assumed that the 
dissipation in the core is only due to transverse shear. Nayfeh [6] adopted the lumped mass 
and stiffness approach to study the flexural vibration response of viscoelastic sandwich beams 
without the consideration of local effects at the edges or near concentrated loads. These 
studies, as well as many others, focus on the influence of the viscoelasticity of the core 
material on the overall dynamic response of the sandwich panel without considering its 
influence on the local shear and normal stresses in the core. The theoretical models assumed 
that the height of the core remains unchanged, i.e. incompressible. However, modern 
sandwich panels are made of compressible foam type core that are usually associated with 
localized effects and displacements through the depth of the core. To address these effects, an 
enhanced high-order theory should be used. Bai and Sun [7] used a high-order theory that 
accounts for the deformability of the core in shear and through its thickness. Yet, the 
influence of the viscoelastic behavior of the core in the vertical direction was ignored 
assuming that most of the energy dissipation is attributed to the shear effect. In addition, their 
model is limited to the response of sandwich panels under forced harmonic loads only. Baber 
et al. [8] developed a finite element model for harmonically excited viscoelastic sandwich 
beams based on the theoretical approach of [7]. A high order dynamic theory that accounts for 
the shear and vertical deformability of the core was presented by Frostig and Baruch [9], 
Frostig and Thomsen [10] and Schwarts-Givli et al [11-13]. However, these works did not 
take into account the viscoelastic features of the core or the damping effects in the sandwich 
structure. The damping and viscoelastic dynamic response of reinforced concrete flexural 
members strengthened with adhesively bonded composite materials, which uses a high order 
theory [9], were studied by Hamed and Rabinovitch [14].    

In this paper, a theoretical model for the viscoelastic dynamic analysis of sandwich panels 
made of polymeric foam soft cores and composite laminated face sheets is developed. The 
theoretical approach combines the concepts of the Kelvin-Voigt model of viscoelasticity [15] 
with the concepts of the high-order sandwich theory [16]. The model accounts for the high 
order deformation fields through the height of the core and for the viscoelastic effect in shear 
and in the vertical normal direction. The model developed here uses variational principles, 
dynamic equilibrium, and compatibility requirements between the components, and it is 
applicable to a general combination of boundary conditions and dynamic loads. Hamilton’s 
principle and the small deformations theory are used for the derivation of the equations of 
motion. The lamination theory is used for the modeling of the composite laminated face 
sheets. The analytical and numerical procedures for the solution of the damped equations of 
motion are also addressed. The paper focuses on the influence of the viscoelastic nature of the 
core material on the deformations of the sandwich panel, on the time dependent distributions 
of the internal stress resultants, and, especially, on the time evolution of the critical shear and 
vertical normal stresses in the core and in the core-face sheets interfaces.

1110



Ehab Hamed and Oded Rabinovitch 

2 MATHEMATICAL FORMULATION  
The sign conventions for the coordinates, displacements, loads, stresses, and stress 

resultants  appear in Fig. 1. The equations of motion along with the boundary and continuity 
conditions are derived via the extended Hamilton’s variational principle, which requires that:  

0)(
1

0

t

t
dtWUT (1)

where T is the kinetic energy; U is the strain energy, W is the work of the external loads;  is 
the variational operator; and t is the time. The first variation of the kinetic energy is:
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where t, b, and c refer to the upper face sheet, the lower face sheet, and the core, respectively, 
i  is the mass density of the upper (i=t) and the lower (i=b) face sheets and the core (i=c),

wi(x,zi,t) and ui(x,zi,t) are the vertical and horizontal displacements of each component, 
respectively, Vi (i=t,b,c) is the volume of each component, and )( denotes a derivative with 
respect to time. The first variation of the internal strain energy is 
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where i
xx  and i

xx (i=t,b) are the longitudinal stresses and strains in the upper and lower face 
sheets, c

xz  and c
zz  are the shear and vertical normal stresses in the core, respectively, and c

xz

and c
zz  are the shear angle and vertical normal strain in the core, respectively.  

The kinematic relations of the face sheets assume small displacements and negligible 
shear deformations and follow the Bernoulli-Euler theory: 
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xx
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where zt and zb are measured from the mid-height of the face sheets downwards, uoi is the 
longitudinal deformation at the reference line (mid-height) of the face sheets, and ( ),x is a 
derivative with respect to x. The 2D elasticity kinematic relations for the core: 
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Figure 1: Geometry, loads, sign conventions, and stress resultants: (a) Geometry and loads; (b) Deformations and 
coordinate system; (c) Stresses and stress resultant.  
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The first variation of the work done by the external loads equals: 
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where ),(),,(),,( txmtxntxq xixizi  are the time dependent external distributed loads and 
bending moments exerted at the upper (i=t) and the lower (i=b) face sheets, respectively, 

)(),( tNtP jiji  and )(tM ji  are dynamic concentrated loads and bending moments at jxx , D

is the Dirac function, NC is the number of concentrated loads, and L is the length of the panel.
The assumption of perfect bonding between the components is introduced through 

compatibility requirements imposed on the vertical and the longitudinal deformations at the 
interfaces of the core: 
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where Yt=ht/2 and Yb=hb/2 are the heights of the reference level at mid-height of the upper and 
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lower face sheets, hc is the thickness of the core, and zc is measured from the upper core-sheet 
interface downwards (Fig. 1a).  

While the high order terms of the displacement distributions through the thickness of the 
core are considered, following [14], the distributions of the velocities and accelerations are 
assumed linear through the thickness of the core. For example, the velocities are:  
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Using the variational principle (Eqs. 1-3,6), along with the kinematic relations (Eqs. 4,5), 
the compatibility conditions (Eqs. 7,8), and the velocity and acceleration fields of the core 
(Eqs. 9,10), the equations of motion read: 
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where mi (i=t,b,c) is the mass per unit length of the upper face sheet, the lower face sheet, and 
the core layer, respectively, i

xxN and i
xxM (i=t,b) are the in-plane and the bending moment 
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stress resultant in the face sheets, b is the width of the panel, and Ii (i=t,b) is the geometrical 
moment of inertia of the face sheets. 

2.1 Viscoelastic Constitutive Relations
The constitutive relations for the core material assume a viscoelastic type of behavior and 

adopt the Kelvin-Voigt model [15]. Yet, it should be noted that alternative and more advanced 
viscoelastic models can also be implemented in the theoretical platform developed here. The 
constitutive model reads:

),,(),,(),,( 1 tzxatzxEtzx c
c
zz

c
c

c
zzcc

c
zz (17)

),,(),,(),,( 1 tzxatzxGtzx c
c
xz

c
c

c
xzcc

c
xz (18)

where Ec and Gc are the modulus of elasticity and the shear modulus of the core, respectively, 
c
zz  and c

xz  are the vertical normal strain rate and the shear angle rate, respectively, and ca1

and ca1  are viscous constants that represent the material loss (dissipation) factors. Under 
harmonic vibration conditions, the constitutive relations of Eqs. (17) and (18) reduce to the 
following form: 
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where is the vibration frequency, cE  and cG  are the elastic and shear storage moduli of the 

core, respectively, cE  and cG  are the elastic and shear loss moduli, respectively; and 1i
[7,8]. In this paper, the more general case of dynamic time dependent loading is examined and 
the constitutive relations in the form of Eqs. (17,18) are used.  

Limiting the discussion of the viscoelastic effects to the core materials only, the
constitutive relations of the face sheets follow the lamination theory and read: 
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where i
xxA , i

xxB  and i
xxD  are the extensional, extensional-bending, and flexural rigidities of 

the face sheets in the x direction  

2.2  Viscoelastic Core Layer - Stress and Displacement Fields 
Eq. (16) reveals that the shear stresses are uniform through the height of the core and read: 
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The vertical normal stresses are determined by integration of Eq. (15) yielding: 
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where C x t  is a function of x and t only.
The vertical deformation is determined using the kinematic and the constitutive relations 

(Eqs. 5a,17) and integration through the height of the core:
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where Cw(x,t) is a second function of x and t only. Using the vertical velocity field of the core 
layer (Eq. 9), the vertical displacement field takes the following form:  
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The functions C x t and Cw(x,t) are determined using the compatibility conditions of the 
vertical deformations at the core-face sheet interfaces (Eqs. 7a,8a), and the distributions of the 
vertical deformation and the vertical normal stresses through the thickness of the core read:
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The distribution of the axial deformation is determined using the kinematic relation (Eq. 
5b) and the constitutive relations (Eq. 18). Integration through the height of the core yields: 
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where Cu(x,t) is determined through the compatibility condition of the longitudinal 
displacement at the upper interface (Eq. 7b). Explicitly, uc is determined by introducing the 
velocity fields (Eq. 9,10) and the vertical deformation field (Eq. 27) into Eq. (29):
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2.3 Dynamic Governing Equations   
The dynamic governing equations are derived using the equations of motion (Eqs. 11-16), 

the constitutive relations (Eqs. 17-22), the compatibility requirements of the longitudinal 
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deformations at the lower core-sheet interface (Eq. 8b), and the shear and vertical normal 
stress fields (Eqs. 23 and 28). These equations are stated in terms of the unknown 
displacements wt(x,t), wb(x,t), uot(x,t), uob(x,t) and the unknown shear stress c(x,t) and take the 
following form (for brevity, the notation of the independent variables is omitted):  
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The dynamic governing equations (Eqs. 31-35) form a set of PDEs of order fourteen in 
space, and eight in time. Correspondingly, seven time-dependent boundary conditions are 
prescribed at the edges of the beam, fourteen continuity conditions are set at each connection 
point, and two x dependent initial conditions at t=to are defined for each of the four unknown 
displacements.  For brevity, these conditions are not presented here. 

The time integration of the governing equations follows the Newmark's approach [17]. 
The time domain is divided into finite intervals and the acceleration and velocity fields are 
expressed as explicit functions of the unknown displacement field in the present time step and 
the known displacement, velocity, and acceleration fields in the preceding time step. Using 
this procedure, Eqs. (31-35) reduce to a set of ODEs in terms of wt(x)j, wb(x)j, uot(x)j, uob(x)j,
and c(x). These equations are solved analytically or numerically at each time step. In this 
paper, a multiple shooting numerical algorithm [18] is adopted. 
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3 NUMERICAL STUDY 
The influence of the viscoelastic characteristics of the core layer on the response of a 

sandwich panel simply supported at the lower face sheet only and subjected to two types of 
dynamic loading is numerically investigated. The geometry, mechanical properties, and the 
dynamic loads appear in Fig. 2. The viscoelastic coefficients of the core material are taken as 

1
aa  and 1

aa , where  and  are the core material loss factors in shear and 
normal stresses, respectively. Following Dwivedy et al. [19], the magnitudes of the loss 
factors for Divinycell H60 foam in room temperature are  Based on a preliminary 
free vibrations analysis, the first natural frequency equals about 67Hz.

The interfacial stresses that develop in the panel under a static load of equal magnitude 
appear in figure 3. These results reveal the shear and vertical normal stress concentrations 
near the edges. The time variation of the peak stresses, as well as the variation of the peak 
deflection at midspan under the step load and the harmonic loads is investigated next. 
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Figure 2: Geometry, material properties and loading: (a) Geometry and cross section; (b) Material properties; (c) 
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3.1 Response to step load 
The dynamic response of the sandwich panel to the step load is studied in Fig. 4. The 

results are normalized with respect to the static results, thus, the figures describe the dynamic 
magnification factor (DMF) for the deflections and stresses. For reference, the response of the 
sandwich panel with an elastic core ( 011

aa aa ) is plotted in dashed lines in Fig. 4. The 
results show that the sandwich panel with the elastic core vibrates around the static response 
with a DMF of approximately 2. In the sandwich panel with the visceoalstic core, the DMF is 
approximately 1.9 at the first vibration cycle and it diminishes to about 1.14 after 11 cycles of 
vibration. Using the logarithmic decrement technique, it appears that the damping ratio in 
terms of vertical deflection, as well as in terms of stresses, is about 3% of the critical 
damping. These observations imply that the viscoelastic nature of the core material effectively 
damps the magnitudes of the deflections and critical stresses in time.  

3.2 Response to harmonic load 
The normalized dynamic response of the sandwich panel to the harmonic load is studied in 

Fig. 5. The results show that the dynamic response of the sandwich panel with elastic core 
( 011

aa aa ) is characterized by the forced frequency of the applied load (particular 
solution) and by the first natural frequency of the panel (homogenous solution) through the 
entire time domain. However, in the case of the panel with the viscoelastic core, the 
homogenous solution decays after two cycles and the forced vibrations govern the response. 
In physical terms, it is seen that the stresses that develop with viscoelastic core after 10 cycles 
of vibration are about 25% smaller than the ones observed in the elastic sandwich panel 
without any damping. These observations demonstrate the capabilities of the model to deal 
with different types of dynamic loading and to address the various aspects of the damped 
dynamic response of the sandwich structure.    

4 CONCLUSIONS 
A theoretical model for the dynamic analysis of sandwich panels with soft viscoelastic 

cores has been developed. The model is applicable to any combinations of boundary 
conditions and dynamic loading patterns, and it can be augmented to incorporate different 
viscoelastic constitutive laws. In that sense, it faces the challenge of implementing the 
damping dissipative effect in the analytical sandwich theory. The numerical study has 
demonstrated some of the capabilities of the model and revealed some aspects of the damped 
dynamic behavior of sandwich panels with viscoelastic cores.
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Summary. The aim of this study is to obtain an understanding of the effect of panel curvature 
on residual compressive strength in debond damaged sandwich panels. Finite element 
analysis and linear elastic fracture mechanics are employed to analyze the residual 
compressive strength of curved panels with a circular debond. The Crack Surface 
Displacement Extrapolation (CSDE) method is used to calculate fracture parameters in the 
interface. Compression tests were carried out on two types of debonded curved panels with 
different curvature using Digital Image Correlation (DIC) measurements to determine the 
full-field distribution of strain. The failure and buckling loads predicted from finite element 
analyses are in good agreement with experimental results. 

Key words: Sandwich structures, Curved panels, Debond damages, Fracture mechanics, 
Compressive strength. 

1 INTRODUCTION
Composite sandwich structures are well established structural applications. Such 

structures, however may fail due to a multitude of different failure modes. Debonding of the 
face and core layer is among the most critical damages a sandwich structure can experience. 
This type of damage can be highly critical for the structure as the basic sandwich principle is 
compromised resulting in a lack of structural integrity and reliability as the connection 
between the face and the core layer is lost.  
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In the recent years considerable efforts have been directed into investigations of the effect 
of face/core debonding on the residual strength of sandwich structures. Both analytical and 
numerical methods have been developed to predict the onset and propagation of debonds in 
sandwich structures [1,2]. Berggreen [3,4] recently investigated numerically and 
experimentally debond propagation in flat naval type sandwich panels with circular debonds 
of different sizes exposed to both uniform and non-uniform in-plane compression. Aviles [5] 
likewise carried out both numerical and experimental studies on sandwich panels loaded in 
compression. Nonetheless, all of these studies deal with flat sandwich panels and straight 
crack flanks and only few works have assessed debond damage in curved sandwich members.  

The present study examines the effect of curvature on the residual compressive strength of 
panels with circular debonds. Finite element analysis and Linear Elastic Fracture Mechanics 
(LEFM) are employed to predict failure loads. Results are validated against experimental tests 
and conclusions are drawn with respect to the validity of the developed numerical models. 

2   CURVED SANDWICH PANEL SPECIMENS 

Seven single curve and two flat sandwich panels were experimentally examined; see 
Figure 1 and Table 1. The panels were manufactured by LM Glasfiber A/S. The faces consist 
of three 850 g/m2 non-crimp quadro-axial mats (Devold AMT DBLT-850) with polyester 
resin placed at each side of a Divinycell H100 foam core. The thicknesses of the core and face 
sheets are 30 and 2 mm, respectively. A face/core debond on the convex side of the panels 
was defined by inserting two layers of circular Teflon film between the face and core layer at 
the center of panels. The diameter of the debond is 100 mm. The foam core was bent over a 
metallic mould after thermal softening. All panels were reinforced with ply-wood inserts at 
the top and bottom edges of the panel. The panels were then resin injection molded and cured 
with vacuum consolidation. Furthermore, top and bottom of the panels were machined 
straight and parallel following the specimen manufacturing. Properties for face and core 
materials are listed in Table 2 and 3.  Face material properties are assumed to be the same as 
in [6] and core material properties are based on [7]. 

Panel Type Radius of curvature (m) Type Specimens # 
1 0.5 m Debonded 3 
2 1.0 m Debonded 3 
3 1.0 m Intact 1 
4  (Flat) Intact 2 

Table 1: Different panel types for experiments 
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Figure 1: Geometry of a curved panel specimen with a central debond location 

Parameter Designation Value 
Young’s Modulus Ex, Ey 16.6 GPa
Young’s Modulus Ez 8.4 GPa 

Shear Modulus Gxy 5.8 GPa 
Shear Modulus Gxz= Gyz 2.7 GPa 
Poisson’s ratio xy 0.31 
Poisson’s ratio xz= yz 0.29 

Table 2: Material properties of face sheets, x and y are in-plane and z is out-of-plane. 

Parameter Designation Value 
Young’s Modulus Ec 105 MPa

Shear Modulus Gc 40 MPa
Poisson’s ratio c 0.35

Table 3: Material properties of core (H100) 

3   TEST RIG AND SETUP 

A new test rig was designed and manufactured at Risø DTU in a project supported by the 
Danish Energy Research Programme. The test rig consists of two main steel towers that 
support the vertical edges of the panel specimen. The towers can rotate around their own 
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vertical axis guided by grooves in the supporting base plates. The distance between the towers 
is adjustable. Hence, it is possible to test panels with varying size and curvature in the test rig. 
After adjusting the position of towers, they are fixed by bolts to the two steel base plates. A 
schematic of the test rig and a photo of the actual test set-up are shown in Figure 2.  

(a)                 (b) 

Figure 2: A schematic representation of the test rig (a) and test set-up (b)

To reinforce the loaded edges at the top and bottom of the panel, wooden inserts were inserted 
as mentioned above. The reinforced edges were subsequently in contact with steel plates 
bolted to the load cell of test machine (upper) and the base plate (bottom) respectively. The 
vertical edges the panels were supported by two adjustable steel columns with a width of 40 
mm which restrict the edges of the panels from moving horizontally. The two towers restrict 
movement in the tangential direction. The test rig was inserted into an Instron 8085 5 MN 
servo-hydraulic universal testing machine, see Figure 2(b). A 4 Mpix Digital Image 
Correlation (DIC) measurement system (ARAMIS 4M) was used to monitor 3D surface 
displacements and 2D surface strains during the experiments. The DIC-camera position and 
test rig can be seen in Figure 2. Ramp displacement control with a cross-head rate of 1 
mm/min was applied in all tests. A sample rate of one image per second was used in the DIC-
measurements. 

4   EXPERIMENTAL TEST RESULTS 

The final failure of panels without debonds was accompanied by audible cracking sounds 
before the load suddenly dropped. The final failure occurred by compression failure of one or 
both of the face sheets close to the wooden inserts. Failure of panels with implanted debonds 
occurred suddenly by propagation of the debond. Figure 3 shows a contour plot of the radial 
displacement of a debonded panel with radius of 1 m at the instance just before and after the 
debond has propagated. The debond propagated suddenly (less than a second) to the edge of 
the panel. In all debonded panels the same failure mechanism was observed. However, due to 
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the rapid propagation,, it was not possible for the DIC system to capture more than one image 
during propagation with the operating data acquisition frequency. For the debonded panels the 
dominant mode shape was an opening of the debond overlaid on a global out-plane 
deformation, see Figure 3(a), of the panel most likely introduced by the boundary conditions 
of the test rig. However, at the propagation point the mode shape was suddenly changed, and 
it can be seen that after debond propagation, the final mode shape of the debonded region is 
similar to the second buckling mode shape for the debond, see Figure 3(b). This behavior has 
been investigated by eigen-buckling analyses to determine if there is any other buckling load 
near to the first buckling load, but analyses show that the second buckling load is 
considerably higher than the first buckling load. Due to the expanding volume of the debond 
when opening and propagating, it is believed that an internal vacuum pressure is partly 
responsible for the sharp and localized opening of the debond, see Figure 3. A similar 
observation can be deduced from the tests carried out by Berggreen [3]. 

(a)              (b) 
Figure 3: Radial displacement of a debonded panel with 1m radius (a) just before propagation, (b) after 

propagation.  

5   FINITE ELEMENT MODELING 

To analyze propagation of the debond, fracture mechanics analysis was conducted using 
the finite element method. The calculation of fracture parameters in this paper is based on 
relative nodal pair displacements along the crack flanks which are obtained from finite 
element analysis. The Crack Surface Displacement Extrapolation (CSDE) method presented 
by Berggreen [4] is employed for energy release rate and mode-mixity calculations for a 
bimaterial interface. By application of the definition of mode-mixity suggested by Hutchinson 
and Suo [8], the mode-mixity can be defined as: 

)(
)(arctan i

i

K Kh
Kh           (1) 

where K=K1+iK2 is the complex stress intensity factor,  is the oscillatory index (see [4]) and 
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h is the characteristic length of the crack problem. In sandwich debonding problems the 
characteristic length is often chosen as the face thickness, which will approximately place the 
minimum at the fracture toughness distribution vs. mode-mixity at K = 0. However, in order 
to compare calculated energy release rates with measured fracture toughness, the same 
characteristic length should be used in both mode-mixity definitions. Explicit formulations for 
the mode-mixity and the energy release rate as functions of the relative crack flank 
displacements can be derived as: 

2arctanlnarctan
11

22

h
x

H
H
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x
K      (2) 
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22
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11

2
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41

xyH
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where x and y are the relative crack shearing and opening displacements of the crack flanks 
at the position x. H11 and H22 are bimaterial constants, see [4].  

Thus, using a finite element solution to calculate the relative nodal displacements of the 
crack flanks these two fracture parameters can be determined. To extract correct energy 
release rates and mode-mixities, the CSDE-method [4] was employed. 

A 3D finite element model was developed in the commercial finite element code, ANSYS 
version 10, using isoparametric parabolic and linear elements (SOLID95 and SOLID45). 
Load controlled geometrical nonlinear analyses were performed and initial imperfections 
introduced by small debond opening displacements in the first load step achieved from scaled 
eigen-buckling shapes. Because of geometrical and loading symmetry only a 1/4 model was 
analyzed. Furthermore, overlapping of crack flanks was avoided by use of contact elements 
(CONTACT173 and TARGET170). The vacuum effect which was mentioned earlier was 
simulated by the use of a number of spring elements (SPRING14) with variable stiffness 
between the core and face. Different stiffnesses of the spring elements were chosen in order to 
investigate the effect of the vacuum on the behavior of the panels. To simulate the boundary 
conditions similar to the experimental setup, nodes on the top and bottom of the panels were 
fully clamped except in the vertical direction. At the vertical edges nodes were restricted from 
moving in radial and tangential directions. However, as it can be seen in Figure 3, a small out-
of-plane displacement of the top edge was observed which will violate the ideal boundary 
conditions. Due to the need of a high mesh density at the crack front when performing the 
fracture mechanics analysis, a submodeling technique was employed. Interpolated degrees of 
freedom results at the cut boundaries in the global model were used as boundary conditions in 
the submodel at the different load steps, allowing a higher mesh density to be employed and 
thus improving the accuracy of the fracture mechanics analysis. The finite element model and 
submodel are shown in Figure 4. 

In order to predict the debond propagation load, the fracture toughness vs. mode-mixity 
distribution is assumed on the basis of fracture toughness values similar to what was assumed 
in Berggreen [9]. In order to extract energy release rates and mode-mixities using the CSDE 
method, a macro was developed, able to extract these values at crack front positions along the 
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circular debond. The energy release rate and mode-mixity were calculated at six different 
positions along the crack front at a 15 degree interval. 

(a)                (b) 
Figure 4: Finite element models (a) 1/4 panel showing the mesh densities applied in the global model. Min. 

element size is 0.2 mm and (b) sub-model showing the mesh density applied. Min. element size is 0.02 mm

6    COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS 

The calculated deformed shape of a debonded panel with 0.5 mm radius is shown in 
Figure 5. From the deformed shape it can be seen that the maximum opening of the crack 
flanks appears where the crack flanks have maximum curvature which is also the plane at 
which the load is perpendicular to the same plane. Furthermore, the opening of the crack 
flanks is decreasing as the curvature of the crack flanks decrease in curvature and the position 
at the debond front moves to the position at which to the plane is parallel to the loading 
direction and where the crack flanks are completely straight. Numerically predicted and 
experimentally determined failure loads for debonded curved panels with 0.5 and 1 m radius 
of curvature and KS = 10 MPa spring element stiffness are listed in Table 4. From the results 
in Table 4 it can be concluded that the numerical analysis underestimates the failure load of 
the panels by about 5-27%, while the stiffness of the panels is accurately predicted as can be 
seen in Figure 6 (the finite element results in this figure are from 1/4 model of the panel 
without fracture analysis). The accuracy of the failure load prediction is considerably better 
for the shallow panels (5%) than the panels with higher curvature (27%). This tendency can 
be addressed to the straight crack flank assumption in the fracture analysis which for the 
highly curved panels is questionable. 

Normalized energy release rates at the investigated crack front positions at the onset of 
propagation are shown in Figure 7 in the form of polar diagrams. At propagation the energy 
release rate along the crack front is binocular-shaped, with a maximum at 0 and 180 and 
minimum at 90  and 270 , see Figure 4. These diagrams are confirmed by the experimental 
observations where the crack propagation initiates close to the 0  and 180 positions forming 
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a propagation band across the panel to the panel edges. The minimum value positions at 90
and 270  confirm the experimental observations of unloaded debond regions at the top and 
bottom crack front positions.  

Figure 5: The deformed shape of ¼ panel 

        (a)                                                                     (b) 
Figure 6: Load-displacement plots from experiments and FEA. (a) curved panel with radius 0.5 m, (b) curved 

panel with radius 1 m. 

Panel type Experimental value (kN) Predicted value (kN) 
1: R = 0.5 m 245±10 178 
2: R = 1.0 m 230±5 218 

4: R =   272 ---- 
4 238±7 ---- 

Table 4: Predicted and experimental failure loads. The predicted failure loads are given for the spring 
stiffness KS = 10 MPa. 
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Figure 7: Normalized energy release rate (G/Gc) along the crack front for the panel with 0.5 m (left) and 1 m 
(right) radius 

In order to investigate the buckling1/instability behavior of the debonded panels, 
buckling/instability loads were extracted from the tests, eigen-value analysis and nonlinear 
analysis. Figure 8 shows load vs. radial out-of-plane deflection graphs for panels with 
debonds from experiments and numerical analysis using different spring element stiffnesses. 
Initially, the out-of-plane deflection and opening of the debond increases linearly with 
increasing load indicating a slow opening. However, as the load approaches the critical 
propagation load for the debond, the debond opening increases nonlinearly. Thus, a clear 
bifurcation buckling behavior of the debond is not observed either in non-linear analysis or 
experimental tests. It can be seen that the stiffness of the spring elements used to simulate the 
vacuum effect between core and debonded face sheet, highly affects the out-of-plane 
deflection of the debonded face sheet in the post-buckling. In order to extract instability loads 
from the numerical analysis, a spring stiffness of 10 MPa was applied, as good agreement 
with the experimental radial opening vs. load results was achieved. 

  (a)               (b) 
Figure 8: Load vs. Central radial out-of-plane debond defection for varying spring element stiffness for (a) 0.5 

mm radius of curvature and (b) 1 m radius of curvature 

1 The term “buckling” is only used in relation to bifurcation behavior and is only relevant for the eigen-value 
analysis. 
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The graphical method developed by Southwell [10] is applied in order to determine the 
instability loads. Generally, the Southwell method is a method which predicts the global 
instability load of initially imperfect structural members. The method was originally 
developed for columns, but experiments indicate that the method may be extended to plates 
[11]. Southwell plots for the curved debonded panel with 0.5 and 1 m radius of curvature are 
shown in Figure 9 from the experiments. 

(a)               (b) 

Figure 9: Southwell plots for debonded panels (Panel 1) for R=500 (a) and R=1000 (b) from experiments. The 
instability load can be found as the inverse of the slope of the linear tendency curve (stippled). 

 Table 5 summarizes the critical instability loads extracted from finite element analyses 
(with 10 MPa spring elements stiffness) and Southwell plots (figure 9). The eigen-value 
analysis results generally predicts buckling loads higher than the values obtained from 
experiments, while the results from nonlinear analyses are in good agreement with 
experimental data. This can most likely be addressed to the presence of initial specimen 
imperfections which effects are not included in the eigen-value analysis which assumes an 
ideal elastic structure. 

Radius (m) Experiments (kN) Nonlinear analysis (kN) Eigen-value (kN)
0.5 81.67±7 76.5 106.8 
1 50.81±5 46.7 81.3 

Table 5: Theoretical and experimental instability/buckling loads 

7    CONCLUSION 

 The aim of this study was to investigate the applicability of present fracture mechanics 
models which were originally developed for perfectly flat structures and crack flanks in 
curved geometries. Using LEFM combined with the Crack Surface Displacement 
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Extrapolation (CSDE) method and finite element analysis, the residual strength of a limited 
range of curved sandwich panels with debond damages was predicted. Two types of curved 
debonded panels with different radius of curvatures were tested to validate finite element 
results. The debonds had a circular shape at the center location of the panels. In order to 
simulate the debond vacuum effect observed during the experiments, spring elements with 
low stiffness were used. The results show that the spring stiffness of these elements highly 
affects the post-buckling behavior of the panels indicating a similar conclusion for the debond 
vacuum effect. The presented finite element model was able to predict the failure load with 
about 5-27% error; however the accuracy is considerably better for the shallow panels (5%) 
than the panels with higher curvature (27%), indicating that the straight crack flank 
assumption is increasingly violated for increasing panel curvature. Energy release rates and 
mode-mixities were calculated at six positions along the debond crack front at a 15 degree 
interval in order to investigate the effect of the debond crack front position. Results indicate 
that at propagation the energy release rate distribution along the debond crack front is 
binocular-shaped, with maximum at 0˚and 180˚and minimum value at 90˚ and270˚, similar to 
earlier reported results for flat panels. The results were also confirmed by experimental 
observations where the crack propagation initiated around 0˚ and 180˚positions forming a 
propagation band across the panel to the panel edges supported by the test rig. Using linear 
eigen-value and geometrically nonlinear analysis, the buckling/instability behavior of the 
panels was investigated. The Southwell method was employed to extract instability loads. 
Results from linear eigen-value analysis were higher than the actual values obtained from 
experiments, while the results of the nonlinear analyses were in good agreement with 
experimental data, indicating an effect from initial imperfections on the buckling behavior of 
the tested panels. 
 The initial findings presented in this paper illustrate that in order to analyze debonded 
panels with an arbitrary curvature, the present LEFM theory for debonds have to be expanded 
to account for curvature of the crack flanks. Furthermore, for cases with cyclic loading where 
gradual fatigue debond propagation can be expected, propagation modeling of the debond 
front is required..  
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Summary. The paper presents the results of a preliminary experimental and numerical study 
of the local strain and stress concentrations in the vicinity of transition zones from sandwich 
to monolithic laminate configurations. The numerical modelling was conducted using finite 
element analysis, and the numerical results have substantiated the presence of the local 
effects that were measured experimentally. Some simple considerations regarding design 
optimization of transition zones between sandwich and monolithic composite laminates are 
also presented.  

1 INTRODUCTION 
Sandwich structures are excellent structural elements with respect to their global load-

bearing capacity, but their practical functionality necessarily includes the possibility of 
joining them as well as to introduce rigging/furnishing for various external appliances. This 
involves the use of different internal sub-structures, which cover a whole range of internal 
arrangements in sandwich structures/panels, such as core joints, edge and corner stiffeners, 
through-the-thickness inserts, etc. Despite the many possible types of sandwich sub-structures 
which differ from each other with respect to their practical use, design, materials and 
manufacturing techniques, the essence of the local phenomena developing in and around the 
sub-structure is similar in all cases. This involves stress concentrations due to the presence of 
material and geometric discontinuities. A core junction can be considered as a generic 
example or model for all such internal sub-structures, and it was analysed both experimentally 
and numerically [1-2]. The transition of a sandwich panel/plate to a monolithic laminate is 
another common design design modification, which consists of a gradual reduction of the 
sandwich core thickness to zero, where the sandwich face sheets meet each other to form a 
monolithic laminate. The vacuum infusion manufacturing process allows complex tailoring of 
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composite sandwich panels, and the use of transitions from sandwich to monolithic laminates 
as a part of the design is widely exploited in aerospace, transportation, boat/ship, wind turbine 
blade and various other applications [3-6]. In the vicinity of a sandwich to monolithic 
composite transition zone, local effects will be induced. As such local effects are associated 
with severe stress concentrations, they may jeopardize the global performance of the whole 
structure. As there appear to be no studies concerning these effects, the present investigation 
presents the preliminary results of an experimental investigation and finite element modelling 
of the stress and strain distributions in sandwich beams (panels) with transitions from 
sandwich to monolithic laminate configurations.  

2 TEST SPECIMENS AND EXPERIMENTAL SET-UP 
Sandwich beams with two transition zones from sandwich to monolithic configurations 

were prepared using the vacuum infusion technique. For simplicity a 3-point loading scheme 
was chosen, and the load application is illustrated by arrows in Fig.1. The beams marked as 
Configuration 1 and 2 are the same sandwich beam configurations, and the numbers refer to 
the loading situation of the beams with respect to the geometry of the monolithic part and the 
loading direction. For example, sandwich beam configuration 1 is shown in Fig. 3. The 
geometry of the test specimens is also shown in Fig.1. The face sheets were made from and 
the glass reinforced epoxy, and two different PVC foams were used as core materials, H60 
and H200 from DIAB. The specimens were manufactured using vacuum infusion. The 
material properties are quoted in Table 1.  

Figure 1: Geometry, boundary conditions and loading scheme of the sandwich test specimens. 
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The two transition zones are placed close to the beam centre. As sandwich structures are 
inherently sensitive to failure due to transverse stresses, the specific design was chosen such 
that it provided two distinct transition zones and prohibited core collapse in the most loaded 
central part of the specimen. The design of the test specimens has no particular practical 
relevance and was chosen solely due to experimental reasons, since this design facilitates the 
controlled loading and measurements of the local effects.  

A zoom on the transition zone of the test specimens is shown in Fig. 2(a). Here the outer 
face surfaces and face-core interfaces are also labeled (“curved, ext., curved, int.” etc), to 
keep track of the experimental and numerical data in the following analyses. The photo of Fig. 
2(b) illustrates the modified transition zone, where an additional core patch of a denser PVC 
foam H200 was used in order to obtain a more smooth redistribution of the local stresses with 
the purpose of reduction of the local effects. Fig. 3 presents the set-up used for the 
experimental investigation.  

The sandwich beam specimens were subjected to static loading, and the loading response 
was kept within the linear range. The main purpose of the experiment was to measure the 
strain distributions along the outer surfaces of the beam faces with special attention on the 
transition zones. 

Figure 2: Zoom on the transitions from sandwich to monolithic laminate: (a) – experimentally tested and 
modelled configuration with interfaces and outer surfaces of the sandwich faces indicated; 

(b) – “optimized” design  configuration with high-density core insert
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Therefore the latter were furnished with a chain of five 1 mm strain gauges (situated at a 
distance 45 mm from the beam centre – cf. Fig. 3). This allowed the monitoring of the strains 
at the locations where local stress concentrations were expected. One of the strain gauges was 
placed on the surface of the monolithic laminate close to the centre of the sandwich beams at 
the distance of 25 mm, and another was placed on the sandwich face laminate at the distance 
of 150 mm in order to assess the overall strains in the sandwich beam (cf. Fig. 2). These 
separate strain gauges together with 2 dial gauges for measuring the central beam deflection 
and the beam deflection 150 mm from the centre made it possible to control the specimens 
were loaded within the linear load-response domain.  

Figure 3: Experimental set-up for 3-point bending of sandwich-monolith sandwich beams with a zoom on the 
strain-gauge positions in the transition zone. 

3 FINITE ELEMENT MODELLING 
Finite Element Analysis was used for the numerical modelling of the specimens with 

sandwich to monolith laminate transitions subjected to 3-point bending. Due to the symmetry 
of the chosen specimen, only half of the sandwich beam was modelled. For this purpose the 
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commercially available finite element code ABAQUS Standard 6.6 was used. The face sheets 
and the main core (H grade PVC foam H60) were modelled with four node quadrilateral plane 
stress element (CPS4R), while the high density triangular core patch (H grade PVC foam 
H200) was modelled with three node triangular plane stress element (CPS3). A reasonably 
fine mesh was used to ensure convergence of the finite element solution. For this purpose the 
face sheets were  modelled using five layers of elements in the thickness direction, while fifty 
one elements were used along the thickness of the core. The number of elements along the 
longitudinal direction was appropriately taken to have element aspect ratio of the order of one. 
Clamped boundary conditions were imposed by restraining all the degrees of freedom of the 
nodes at left end of the model representing the loaded central section of the specimen. Half of 
the applied load i.e., the vertical reaction at of the supports was applied at the node 
corresponding to the support near the right end.  

Function/Material Elastic modulus, MPa Poisson´s ratio Tensile/compressive 
strength, MPa 

Face/GFRP 26000 0.3  
Main Core/PVC-foam H60 70 0.35 0.9/1.8 

Core Patch/PVC-foam H200 310 0.35 4.8/7.1 

Table 1: Mechanical properties of the sandwich constituents  

4 LOCAL EFFECTS AND CONSIDERATIONS ON DESIGN OPTIMIZATION 
The first stage of the experimental study included measurements of the beam centre 

deflections vs. applied loading. These tests were conducted in order to validate the linearity of 
the load-response characteristics. A dial gauge (Fig. 3) was placed under the centre of the 
beam specimens to measure the central displacement of the beam vs. applied load (Fig. 3). 
The results of measurements and the load-response predicted using FEA are shown in Fig. 4.  

From Fig. 4 it is seen that the load-deflection curves are linear in the entire range of 
applied loads, although the measured displacements were found to be slightly smaller than the 
predicted results. This might be explained by the uncertainty of determination of the modulus 
of elasticity of the GFRP faces. The modulus of elasticity of GFPR face given in Table 1 was 
found experimentally in a tensile test conducted on a GFPR laminate manufactured separately 
for this particular purpose using vaccum infusion. Given the rather substantial variation of the 
mechanical properties that may occur due to the manufacturing process, the observede 
divergence of the numerical and experimental data in the range of 7% in Fig. 4 is considered 
to be acceptable.  
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Fig. 5 presents the strain distributions along the outer surfaces of the beam faces in the 
monolithic and sandwich laminate parts. Both experimental and the numerically generated 
data are included in the figure, and a fairly close match is observed. A significant increase of 
the strains (and therefore also of the corresponding stress) in the vicinity of the transition 
zones should be noticed. For example, at the outer surface of the curved face the nominal 
tensile strain raise from 1650 s to 2500 s at distance of 50 mm from the beam centre. 
Moreover, the same face experiences compression at the distance of 70 mm from the beam 
centre, where the classical sandwich laminate starts. An even more drastic strain gradient is 
observed for the neutral line of the monolithic laminate which continues into the internal 
surface of the sandwich beam (cf. Fig. 2). Here zero normal strain shoots up to more than 
2000 s over a very short distance. Overall, the match between the numerical predictions and 
the experimental data is very good.  

While the numerically predicted strains in Fig. 5 were calculated to provide a direct 
comparison with the measurements, the strains presented in Fig. 6 are given in the coordinate 
system XY of the FEA-model related to the sandwich beam (the X-axis is along the beam 
neutral line, and the Y-axis is the in the thickness direction). The numerical analysis presented 
in Fig. 6 further reveals the physics of the local effects, namely that severe shear strains 
(stresses) are present, and that these shear strains trigger the local effects at the transition 
zones. At a short distance of approximately 5 mm from the beam centre, the shear strain 
increases from zero up to about 3000 s. Sandwich structures are especially well suited for 
the transfer of shear stresses/strains through the thick core material, and the transition to a 

Figure 4: Load response of sandwich specimen shown in Fig. 3 (Loading condition 1, Fig. 1). 
Measurements were conducted using dial gauges located in the beam centre and  

at distance of 150 mm from the centre. FEA predictions correspond to the same locations. 
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monolithic laminate, which forces the faces to carry the shear loading, therefore disrupts the 
shear stress distribution and causes high local strain (stress) concentrations (re-distribution of 
the shear stresses across the geometrical discontinuities).  

Obviously stress concentrations arise not only in the faces of the sandwich beam as it was 
shown in the experiment, but also in the adjacent core. Fig. 7 gives the predicted strain 
distributions in the faces of the beam similar to these given in Fig.5, but in a more detailed 
representation. The strains are depicted by dashed lines and specify a significant overshooting 
of the nominal strains at the transitions. It was not possible at the time to measure the core 
strains, and therefore Fig. 8(a) gives the numerically predicted principal stresses in the core 
close to the transition zone for the 2 different configurations shown in Fig, 2. It should be 
noticed that the maximum stress level is close to the tensile strength of the foam core (DIAB 
PVC H60).  

In order to suppress or reduce the stress concentrations induced by local effects various 
means can be used. One such measure is to introduce local reinforcements of the faces at the 
transition from monolithic to sandwich laminate. Another suggestion is illustrated in Fig. 
2(b). Here a patch of denser foam, in this case Divinycell H200, is inserted in order to 
reinforce the core at the transition zone. This configuration is referred to as the “optimized” 
design. The influence on the strain distribution of the insertion of high density patch or insert 
as shown in Fig. 2(b) is illustrated in Figs. 7 and 8. It is observed that not only the level of the 
overall strains in the faces is diminished (Fig. 7), but also the overshooting of the nominal 
strains is much smaller. It is seen from Fig. 8 that the stresses in the patch/insert for the 
“optimized” design are of a higher level than for the conventional design. However, the 
strength of the high density core (H200) is significantly higher than that of the H60 core, 
which effectively means that the strength margin of the “optimized” design is higher. Thus, 
the introduction of the patch core has reduced the dangerous stress concentrations in the 
sandwich beam core in the transition zone between the sandwich and the monolithic laminate.  

5 CONCLUSIONS 
The results of a preliminary combined study experimental and numerical study of the local 

strain and stress concentrations in the vicinity of transition zones from sandwich to monolithic 
laminate configurations have been presented.  

The experimental investigations were conducted on test specimens loaded in 3-point 
bending, with a central monolithic glass epoxy laminate at the beam centre which transforms 
into PVC foam-cored sandwich laminates (glass epoxy faces) toward the edge supports. The 
sandwich to monolithic laminate transitions were instrumented with strain-gauge chains, and 
the beam specimens were instrumented with dial gauges.  

The experimental measurements have shown that very high local stress concentrations are 
induced in the faces and the face-core interfaces in the vicinity of the transition zone. In 
addition to the experimental measurements, elaborate FEA analyses were conducted using the 
software package ABAQUS Standard 6.6. The FEA results confirmed the experimental 
findings, and a good match was found between the experimental findings (strains and 
displacements) and the FEA results. 

1139



Elena Bozhevolnaya, Abdul H. Sheikh and Ole T. Thomsen. 

Figure 6: Strains calculated using FEA at the interfaces and external surfaces of the curved 
face of the sandwich beam (cf. Fig. 2). Loading configuration 2 according to Fig. 1.  

Figure 5: Experimentally measured and numerically calculated strains along the sandwich faces. The 
coordinate is measured from the centre of the beam (Fig. 1) and the face surfaces are specified in Fig. 2. 
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(a)

(b)

Figure 7: Strains calculated along the interfaces and external surfaces of the beam face for the 
original (a) and “optimized” (b) design (cf. Fig. 2). Load configuration 1 according to Fig. 1. 

Figure 8: Maximum principal stresses calculated in the sandwich beam core for 
the original (a) and “optimized” (b) design (cf. Fig. 2). Load is 150 N. 
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In addition to the investigation of the standard monolithic laminate composite to sandwich 
panel transition, a modified design or “optimized” design was investigated experimentally as 
well as numerically. In this “optimized” design a patch or insert of high density PVC foam 
core material (H200 vs. H60 in the conventional design) was inserted in the transition zone. 
Both the experimental and the numerical results showed that the stress concentrations in the 
“optimized” design are relieved considerably in the faces and the core-face interfaces.. 
Moreover, the strength margin in the higher density core was improved considerably even 
though the actual core stresses were in fact increased (the higher density core has higher 
strength). Thus, the introduction of a patch core/insert of higher density has reduced the 
dangerous stress concentrations in the sandwich beam core in the transition zone between the 
sandwich and the monolithic laminate. 
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Summary. The sandwich panels with viscoelastic cores, which represent the physical appli-
cation of the viscoelastic integrated damping treatment concept, associate different materials,
each one having a specific structural contribution, where the outside faces, usually made from
a stiff material, guarantee the stiffness of the composite structure whereas the viscoelastic and
soft core provides the damping capability.

The application of soft cores, specially the thick ones, into sandwich plates produces an
important decoupling effect, leading to a significant flexural stiffness reduction of the sandwich
plate, as experimental and numerical results evidence. From this observation and pursuing a
solution to minimize such effect, the partitioning of the core layer into multiple layers separated
by thin constraining layers is hereby considered. Taking advantage of the application of the
multiple viscoelastic layers in the sandwich core, it is also analyzed the potential use of different
viscoelastic materials in order to spread out the efficient temperature range of the damping
treatment.

To verify and evaluate the effects of the multi-layer and multi-material viscoelastic cores
in sandwich panels, an experimental and a numerical study was conducted on representative
specimens of these design concepts. The results achieved from this study demonstrate the ap-
plicability of the two multiple layer configurations, evidencing the effect of the partitioning
procedure onto the reduction of the flexural stiffness decay and the efficient temperature range
enlargement when adopting viscoelastic materials with different transition temperatures.

1 INTRODUCTION

The application of thin viscoelastic layers in the core of sandwich plates provides an effective

passive damping mechanism broadly applied on light structures such as aeronautic fuselage

panels and satellite panels. In fact, the viscoelastic core is cyclically shear deformed due to the
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relative motion of the external skins of the sandwich, leading to an important thermal dissipative

effect and, thus, to a considerable reduction of the vibration energy of the structure.

Usually, very thin viscoelastic layers (0.02-0.10mm) are efficiently applied due to the high

shear deformation that is imposed by the adjacent stiff layers. The application of thick vis-

coelastic layers, which increase the viscoelastic deformation energy, strongly reduces the over-

all flexural stiffness of the sandwich panel due to the reduced skin stiffness coupling provided

by the soft and thick viscoelastic core. Moreover, the relative shear deformation developed

within thin viscoelastic layers is significantly higher than the one developed within thick layers.

To solve these restrictions it is proposed to apply several thin viscoelastic layers separated by

interlaminar constraining layers. With this configuration, it is possible to increase the amount

of viscoelastic material maintaining the flexural stiffness of the sandwich plate. Moreover, by

using a multi-layer scheme, it is possible to apply viscoelastic materials with different transition

temperatures, which can be useful to enlarge the efficient temperature range of the damping

treatment.

The aim of this work is to test and simulate several multi-layer and multi-material specimens

in order to verify and validate the feasibility of the proposed treatment configurations.

2 MULTI-LAYER AND MULTI-MATERIAL CORE DAMPING TREATMENTS

The application of multiple viscoelastic layers in free or constrained surface treatments was

proposed by Jones [1, 2] as a procedure to increase the treatment efficiency. This multi-layer

configuration was also reported as a solution to enlarge the narrow efficient range of the vis-

coelastic treatments by employing layers of materials with different transition temperatures.

The application of this technique to the integrated layer configuration in sandwich structures,

pursuing the same benefits, isn’t, however, straightforward. In fact, the number of layers, the

relative dimensions of the layers, the material properties and the layering sequence of multi-

material configurations are important design parameters and play an important role in the struc-

ture behavior. The influence of these variables is considerably of extreme importance when

compared to the multi-layer surface treatments, where the damping layer do not greatly mod-

ify the flexural stiffness of the structure. On the contrary, the core of the integrated treatment

is simultaneously responsible for the dissipative effect and the stiffness coupling between the

outside layers, which defines the global flexural stiffness of the structure.

3 EXPERIMENTAL STUDY

The first step of this study was the experimental verification of the feasibility of the multi-

layer concept. In this first part of the study, an experimental work on a set of representative

specimens was developed to evaluate the variation of the fundamental natural frequency and

corresponding modal loss factor when adopting a multi-layer configuration.

The experimental results obtained were also used to validate the model adopted in the nu-

merical analysis of this study.
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3.1 Experimental specimens

To develop the experimental study, plate specimens with integrated viscoelastic treatments

were produced. Two viscoelastic materials were used to produce the viscoelastic layers applied

in the core of the sandwich plates. The first material, 3M ISD112 [3], is designed for room

temperature applications presenting an efficiency peak between 20 and 30◦C. The other vis-

coelastic material, 3M ISD110, is designed for higher temperature applications, ranging from

40 to 100◦C.

The specimens were produced with aluminum plates with 1mm thickness, 200mm length

and 100mm width. A thin aluminum sheet provided the inner constraining layers for the multi-

layer and multi-material specimens. Table 1 presents the properties of the materials applied in

the study.

Material Young’s modulus [Pa] Poisson’s ratio Density [Kg/m3]

AA 1050A H24 70E9 0.32 2708

AA 8050 H24 70E9 0.32 2708

3M ISD112 see [3] 0.49 1140

3M ISD110 see [3] 0.49 1140

Table 1: Material properties

3.1.1 Single-layer specimens

The single-layer specimens, designated by S1 and S2 (Figure 1), were produced by apply-

ing a single core layer of 3M ISD112 and 3M ISD110, respectively, with 0.127mm thickness.

These specimens provided the reference to evaluate the multi-layer and multi-material bene-

fits/drawbacks.

3.1.2 Multi-layer specimens

Two multi-layer specimens, designated by M1 e M2 (Figure 1), were also produced applying,

respectively, 2 and 3 thin layers (0.0508mm) of 3M ISD112 intercalated with thin (0.05mm)

aluminum sheets that provided the constraining effect.

3.1.3 Multi-material specimens

The specimens M3 and M4 (Figure 1) represent the multi-material configurations. These

specimens are dimensionally identical to the multi-layer ones where some 3M ISD112 layers

were replaced by identical 3M ISD110 layers, as depicted in Figure 1.

The Figure 2 illustrates the experimental specimens produced and tested in this study.
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S1

Aluminum

3M ISD112

Aluminum

M1
Aluminum

3M ISD112
Aluminum

3M ISD112

Aluminum

M2
Aluminum

3M ISD112
Aluminum

3M ISD112
Aluminum

3M ISD112

Aluminum

S2
Aluminum

3M ISD110

Aluminum

M3
Aluminum

3M ISD112
Aluminum

3M ISD110

Aluminum

M4
Aluminum

3M ISD110
Aluminum

3M ISD112
Aluminum

3M ISD110

Aluminum

Figure 1: Specimens configuration

Figure 2: Specimens analyzed
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3.2 Experimental setup

As stated above, the experimental study developed in this work had two purposes: to pro-

vide a comparison analysis between the damping efficiency and the flexural stiffness achieved

for each treatment and to validate the model adopted for the numerical analysis presented in

the following section. For both purposes, the aim of the experimental study was the determi-

nation of a representative set of frequency response functions providing the input data for a

modal parameter identification process and, on the other hand, a reliable basis for the numerical

layerwise model [5, 6] validation for a direct frequency analysis using the complex modulus

approach [4].

To obtain free boundary conditions, the experimental specimens were suspended by a thin

nylon wire from a rigid frame. A mesh with 15 measuring points, as depicted in Figure 3, was

defined for all the tested specimens.
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Figure 3: Measuring mesh and specimen boundary conditions

An electrodynamic shaker (Ling Dynamic Systems - model 201), suspended from an inde-

pendent rigid frame, was utilized to generate a random ([0-800]Hz) excitation in point 5 of

each specimen. A thin and flexible stinger was used to link the shaker to the miniature force

transducer (Brüel & Kjær - model 8203) attached to the plate surface, which provided the mea-

surement of the applied dynamic force. The specimens responses were evaluated by using a

laser vibrometer (Polytec - model OFV303) to measure the velocity of each point of the mea-

suring mesh. The temperature of the measurement was evaluated by a thermocouple located

near the specimens.
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3.3 Experimental validation of the numerical model

For each specimen, fifteen frequency response functions (mobility functions) were deter-

mined. These experimental frequency response functions were compared to the numerical ones

generated by using the finite element model adopted in this study [5], which allowed the val-

idation of the finite element model as well as the complex modulus approach to characterize

the viscoelastic material. This model assessment was performed by simple visual comparison

of the experimental and finite element predicted frequency response functions, as presented in

Figures 4-9.
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Figure 4: Driving point mobility function for specimen S1 (27.11oC)
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Figure 5: Driving point mobility function for specimen S2 (27.11oC)
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Figure 6: Driving point mobility function for specimen M1 (27.11oC)
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Figure 7: Driving point mobility function for specimen M2 (27.11oC)
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Figure 8: Driving point mobility function for specimen M3 (27.11oC)
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Figure 9: Driving point mobility function for specimen M4 (27.11oC)

1151



R.A.S. Moreira and J. Dias Rodrigues

3.4 Experimental results - modal identification

Using a circle fit modal parameter identification procedure, the fundamental natural fre-

quency and the corresponding modal loss factor were identified for the six test specimens. The

identified values are presented in Table 2.

Specimen Natural frequency [Hz] Modal loss factor

S1 238.58 0.270

S2 281.42 0.032

M1 245.32 0.244

M2 250.54 0.299

M3 261.57 0.163

M4 267.21 0.193

Table 2: Fundamental natural frequencies and modal loss factors

While the modal loss factor provides an indicator for the damping efficiency achieved by

each configuration, the fundamental natural frequency is useful to evaluate the flexural stiffness

variation for each treatment configuration.

Since the inner constraining layer is made of aluminum, the additional mass of the multi-

layer treatment is higher than the mass added by the single layer treatment. This observation,

along with the higher values for the fundamental natural frequency achieved with the multi-

layer and multi-material specimens, supports the assumed benefit of the integrated treatments

with multiple layers in the core: the attenuation of the decoupling effect promoted by the soft

core.

From the modal loss factor values it was also possible to establish an efficiency relation-

ship between multi-layer and single-layer treatment configurations. Despite the higher damp-

ing achieved with the specimen M2, having into consideration the viscoelastic material mass

effectively introduced in the dissipative core, specimen M1 presents the highest damping con-

figuration.

The multi-material specimens present higher natural frequencies and lower modal loss fac-

tors because the 3M ISD110 material has a higher storage modulus and a low loss factor at the

testing temperature conditions (27.1◦C).

4 NUMERICAL ANALYSIS

Using a layerwise finite element model proposed by the authors [5], a numerical analysis

was performed on the proposed treatment configurations in order to verify their behavior along

with the temperature. This study intends to verify the assumed benefits of the multi-material

configuration, which is here proposed as a solution to enlarge the efficient range over the tem-

perature.
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4.1 Analysis method

Since the aim of this analysis is merely to compare the different multi-layer and multi-

material configurations over a large range of temperature, it was used an approximate analysis

procedure to determine directly the modal parameters of the specimens.

The Modal Strain Energy (MSE) method [8] was the selected analysis method due to its

computational efficiency, providing with relatively low cost the modal model that can be used to

compare the treatment configurations through its natural frequencies and corresponding modal

loss factors. The MSE method assumes that the modal shapes of the undamped structure are

representative of the structure with treatment. Therefore, the approximate loss factor of the

damped structure can be easily determined through the ratio between the dissipated energy and

the storage energy using the undamped mode shapes.

In this numerical study, a modified version of the original MSE method [9, 10] is applied in

order to account for the effects of the viscoelastic core in the modal frequencies of the treated

plates.

Modified MSE method algorithm
1. Starting condition:

ωi
r = ω0

2. Iterative loop for calculation of undamped natural frequency:

- eigenvalue problem statement

[KR(ωi
r)]{φr}i = (λ2)i[M ]{φr}i

- natural frequency determination

ωi+1
r = λi

r

- convergency assessment

Δω = |ωi+1
r − ωi

r|/ωi+1
r ≤ Δmax

3. Modal loss factor determination:

ηr =
{φr}T [KI(ω

i+1
r )]{φr}

{φr}T [KR(ωi+1
r )]{φr}

This iterative procedure allows to get an approximate value to the damped natural frequency

and, consequently, a better approximation to the real viscoelastic material properties.

4.2 Numerical results

The proposed modified version of the MSE method was applied to calculate the fundamental

natural frequency and corresponding modal loss factor of the analyzed treatment configurations
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for a range of temperatures from 0◦C to 100◦C.

An additional multi-material configuration, M4*, was considered in this analysis. This con-

figuration, based in the M4 treatment configuration, has the middle viscoelastic layer made of

3M ISD 110 and the two outside viscoelastic layers made of 3M ISD112.

The obtained fundamental natural frequency values are represented in Figure 10. The ob-

tained results show that the treatment configurations with the viscoelastic material 3M ISD110,

S2, M3, M4 and M4*, present higher natural frequencies than those configurations with the

material 3M ISD112. This observed effect is due to the higher transition temperature of the

3M ISD110 viscoelastic material. Additionally, it is also observed that the multi-layer con-

figurations, M1 and M2, present higher natural frequencies than the single-layer configuration

S1, sustaining the assumed major benefit of the multi-layer: the attenuation of the decoupling

effect.

10 20 30 40 50 60 70 80 90 100

Temperature [ oC]

Specimen S1
Specimen S2
Specimen M1
Specimen M2
Specimen M3
Specimen M4
Specimen M4*
Experimental

27.1 oC

M2

S1

M1

M4

M3

S2

Figure 10: Fundamental natural frequency distribution

On the same graphic it is also represented the identified fundamental natural frequencies

listed in Table 2, which present a good agreement with the numerical values.

The modal loss factor distribution, represented in Figure 11, provides the relationship be-

tween the temperature and the treatment configuration efficiency.

Globally, it can be observed that the treatment configurations based on the 3M ISD112 mate-

rial, S1, M1 and M2, present an efficiency peak near the transition temperature of the viscoelas-

tic material. On the other hand, the single-layer treatment made of 3M ISD110 viscoelastic ma-

terial, is particularly efficient at higher temperatures, showing an efficiency peak at 70÷80◦C.

As predicted, the multi-material configurations can be regarded as a transition configuration,
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Figure 11: Modal loss factor distribution

showing an efficiency peak in the middle of the transition temperatures of both viscoelastic

materials.

When comparing the multi-layer configuration M1 to the multi-material configuration M3,

obtained by replacing one of the 3M ISD112 layers by a 3M ISD110 layer, it is possible to

observe that the efficiency increase at the high temperature range is accompanied by a reduction

of the efficiency at the lower temperatures. Contrary, the M4* configuration, obtained by adding

a 3M ISD110 viscoelastic layer into the middle of the M1 core, is able to enlarge the efficient

range without an efficiency reduction at the low temperature range. From the results, it is

also possible to verify that the sequence of the layering scheme along the dissipative core of

the multi-material configuration is of major importance in the flexural stiffness of the treated

structure. The treatment efficiency is also highly dependent upon the layering scheme due to

its effect onto the shear deformation transmissibility from the outside plates to the dissipative

layers.

5 CONCLUSIONS

The present study allowed to evaluate the feasibility of the application of the multi-layer

concept into the integrated viscoelastic damping layer configuration.

The application of multiple viscoelastic layers, separated by stiff constraining layers, provide

a potential solution to overcome the decoupling effect produced by the soft core of the integrated

damping treatments. Moreover, adopting a multi-layer configuration, is is possible to increase

the shear deformation effect in the individual layers, increasing thus the treatment efficiency.

The multi-material configuration is also a promising solution to enlarge the efficiency range
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of the viscoelastic treatments by applying several layers made of viscoelastic materials with

different transition temperatures. Nevertheless, the layering sequence of the layers dictates, not

only the treatment efficiency but also the stiffness coupling capability developed by the damping

core and the deformation pattern inside the sandwich structure.
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Summary. This paper reports on work aimed at developing a practical methodology for the 
predictive modelling of the performance of thermoplastic composite sandwich structures 
under impact loading. Explicit finite element analysis methods, using LS-DYNA™ software, 
are described including materials characterisation and material model calibration for the 
skin and core and validation of deformation response, damage and failure of the sandwich 
structures. The verified finite element model has been applied to the predictive structural 
analysis of a full-scale composite sandwich component.  Simulations agree well with 
experimental results.  

1 INTRODUCTION 
Today, both motorist and governments are demanding that automotive manufacturers 

develop cars that offer improved fuel efficiency, greater safety for both occupants and 
pedestrians, and increased end of life recyclability.  Likewise, in the rail industry, train 
manufacturers are seeking to develop lighter trains in order to minimise wear and tear on 
railway lines, and decrease maintenance. In response to these concerns, both the automotive 
and rail industry are showing increased interest in the application of thermoplastic composite 
(TPC) sandwich structures.  TPC sandwich constructions with fibre reinforced thermoplastic 
face-sheets along with a foam core made from the same thermoplastic material offer several 
advantages.  These include: high stiffness to weight ratio, high energy absorption, potential 
for high volume manufacture and recyclability.  Furthermore, an all thermoplastic composite 
sandwich allows for greater design freedom as they can be thermoformed into complex 
shapes.  Yet, despite the advantages that TPC sandwiches provide, their application in trains 
and motor vehicles remains limited due in part to the lack of appropriate design procedures 
and confidence in their use.  Today, finite element techniques are preferred to other analytical 
methods for the analysis of complex structures [1].  However, finite element modeling of 
composite sandwich constructions poses several challenges due to their inhomogeneous 
construction and anisotropic material properties. In addition, complex failure modes exhibited 
by the sandwich constituent materials under various load conditions offer particularly difficult 
challenges for modelling.  

This paper presents a finite element modeling methodology for predicting the behaviour of 
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TPC sandwich structures under indentation and bending impact loads.  Methods for
calibrating the material models and validating the structural response are presented.  Finally, 
some preliminary results on the predictive modelling of a full scale demonstrator TPC
sandwich component are outlined.

2 SPECIMEN MATERIAL AND MANUFACTURE

Figure 1:  Thermoplastic composite sandwich structure.

The TPC sandwich structure under investigation was manufactured from 60 wt% 0/90 
woven fabric commingled glass/polypropylene (Twintex™) face-sheets supplied by OCV 
Reinforcements.  The core was an anisotropic crushable polypropylene foam (Strandfoam™)
supplied by Dow Automotive.  Strandfoam™ has a high energy absorption efficiency due to 
its extruded honeycomb like structure [2]. 

A schematic of the material configuration for the sandwich beam used in this study is 
shown in Figure 1.  The Strandfoam™ extrusion direction is orientated along the thickness of
the sandwich beam for maximum crush properties in the loading direction. 

Sandwich panels of dimensions 800 mm x 70 mm were manufactured using an optimised
one-step vacuum moulding process [3, 4].  A schematic of the process is shown in Figure 2. 
The vacuum moulding process involved the stacking of preconsolidated layers of Twintex™ 
(0.5 mm thick) on two aluminium transfer plates.  The stacks of Twintex™ were preheated to 
200 °C in a hot air oven.  The first stack, along with the transfer plate is transferred to the 
vacuum table.  The cold foam core is placed on the stack followed quickly by the second 
stack which is placed on top of the foam to complete the sandwich assembly.  The vacuum 
membrane is then clamped over the sandwich and a vacuum is applied. 

Sandwich beam specimens were cut from the moulded panels using a band saw.  Beams
were manufactured with two types of core thickness: 50 mm for indentation tests and 25 mm 
for bending tests.  Beams with skin thicknesses of 1, 2 and 3 mm, were manufactured from 2, 
4 and 6 layers of preconsolidated Twintex™, respectively. 

Twintex™ E-glass/polypropylene
woven fabric composite
face-sheet [090] 

Strandfoam™
polypropylene foam core

x – extrusion direction

y – transverse direction

z – transverse direction
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To vacuum
pumpVacuum

membrane
Preheated
transfer plates

Figure 2:  Schematic of the vacuum moulding process.

4 FINITE ELEMENT MODELLING METHODOLOGY 
The main objective of this study is to develop a robust modelling methodology for 

predictive simulations of the behaviour of TPC sandwich structures under impact loading. 
The proposed methodology consists of: 1) material calibration, 2) material validation and 3) 
structural validation.  A description of each phase is provided below 

4.1 Calibration of material models 
Composite face-sheet material model

The Twintex™ composite was modelled with the MAT 162 composite material model 
implemented in the LS-DYNA™ finite element explicit code [5].  MAT 162 is an elastic-
damage model which is based on a continuum damage mechanics formulation.  It is capable 
of simulating the various composite failure modes such as fibre fracture, matrix cracking (in-
plane and out-of-plane) and delamination.  The MAT 162 model has four damage parameters
(mi…i=1, 2…4) that are used to model the post-elastic damage response of the material under 
various loading conditions.

To-date, there are still no clearly defined methods for calibrating the post-elastic damage
behaviour of composites [6].  In this study, an inverse modelling technique was developed for 
calibrating the MAT 162 damage parameters mi [7].  In this procedure, the damage
parameters were systematically obtained by correlating simulations with the static and 
dynamic coupon stress-strain tests results (tensile, shear and compression).  The damage
parameters were adjusted, iteratively, over several simulation runs until satisfactory
correlation was obtained.  An extensive experimental material characterisation program that 
covered a wide range of static and high strain rate (up to 126 s-1) coupon tests was conducted 
to support the material model calibration process [7].

Vacuum
sealant

Release film

Mould plate Breather
mesh

Cold foam Preheated
core face-sheets
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Figure 3 shows the calibration results for the static tests.  In particular, a novel bi-linear 
procedure for calibrating the non-linear in-plane shear stress-strain response was developed. 
The dynamic calibration results are shown in Figure 4. A distinct strain rate effect was 
identified for the Twintex™ face-sheet laminates during dynamic testing, for both normal and 
shear loading [7].  Variations in the elastic and strength properties with strain rate are
included in MAT 162 through simple logarithmic based functions [5]. Parameters for the 
strain rate equations were derived from the dynamic test data [7]. 
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Figure 3: Quasi-static calibration of MAT 162 damage parameters (a) shear (b) tension (c) compression.
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Figure 4:  Dynamic calibration of MAT 162 damage parameters (a) shear (strain rate = 91 s-1) (b) tension (strain

rate = 70 s-1) (c) compression (strain rate = 126 s-1).

The calibrated material model for the face sheet material was validated by simulating a 
series of static and dynamic three-point bending and falling dart plate impact tests using the
values for the model parameters identified in the calibration procedure. [7].

Figure 5 (a) shows a comparison of the force-displacement curves for the static three-point 
bending test and simulation results.  The curve for the simulation with the calibrated
parameters does not correlate well with the test curve.  This discrepancy is partly explained by 
the assumption in the MAT 162 model that the post-elastic damage response under tensile and 
compressive loading is identical. The model does not allow for the input of different values 
for the damage parameters for the two modes of loading. This is clearly an over simplification
for composites under bending loads where the specimen experiences complex mixed-mode
stress fields.  The model was subsequently refined with the elastic modulus and damage
parameters recalibrated until the correlation improved significantly as depicted by the ‘refined
model’ curve in Figure 5 (a).  Figure 5 (b) shows that there is also good qualitative agreement
between the predicted damage modes for the ‘refined model’ and the experimental
observations.

Due to the limitation of MAT 162 as discussed above, the dynamic three-point bending 
and falling dart plate impact test simulations were conducted with two different sets of values 
for the damage parameters.  The curves in Figure 6 (a) and Figure 7 (a) are labelled as ‘tensile
parameters’ and ‘compression parameters’ respectively. For the dynamic three-point bending 
test the ‘compression parameters’ provided better correlation with the experimental curve 
which suggests that compression failure is more dominant during dynamic bending as 
depicted in Figure 6 (a).  A comparison of the predicted and experimental damage for the 
dynamic bending test is shown in Figure 6 (b). 

The dart plate impact tests and simulations were conducted at incident energies of 30, 35 
and 40 J [7].  Figure 7 (a) shows a comparison of the force-time history curves for the 35 J 
impact simulation and test. By contrast with the three-point bending simulations, the curve 
with the ‘tensile parameters’ simulation provided the better correlation with the test curve in
this case. This may be a reflection of the clamped boundary conditions for the plate impact
which results in membrane tensile stress in the system.  The qualitative comparison of
predicted delamination damage in the mid-ply to the experimental thermograph image, both 
of the same scale, shows reasonable agreement as shown in Figure 7 (b).
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Figure 5:  Comparison of quasi-static three-point bending predicted and experimental results.
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Figure 6:  Comparison of dynamic three-point bending predicted and experimental results for a 319 J impact.
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Figure 7:  Comparison of dynamic falling dart plate impact predicted and experimental results for a 35 J impact.
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Foam core material model 
The Strandfoam™ core was modelled with the MAT 142 material model implemented in 

LS-DYNA™ [5].  MAT 142 is a transversely anisotropic elasto-plastic material model.
Failure is based on a modified Tsai-Wu yield surface that hardens or softens as a function of 
volumetric strain.  The growth of the yield surface is directional and follows the growth of the
material yield stress along the material axes.

Compression, shear and tensile coupon tests were conducted at quasi-static and dynamic
loading rates (Figure 8). The MAT 142 model requires the direct input of the stress-strain 
curves for normal and shear loads in a tabulated format.
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Figure 8:  Characterisation of Strandfoam™ (a) compression (b) shear x-y plane (c) tension.

4.3 Validation: coupon sandwich modelling 
Following the calibration and validation of the material models for the sandwich face-

sheets and core as described in the previous section, simulation of indentation and three-point 
bending of sandwich structures were performed to further validate the modelling procedure. 

Indentation loading of TPC sandwich beams 
Quasi-static and dynamic indentation tests were conducted on TPC sandwich beam

specimens.  The specimens were 250 mm long with a width of 30 mm and nominal core
thickness of 50 mm.  Sandwich beams with three different skin thicknesses were investigated,
(1, 2 and 3 mm).  All sandwich beam skins had a [090] fibre orientation aligned along the 
beam longitudinal axis.  The foam was assembled between the skins such that the
Strandfoam™ extrusion direction was aligned with the impact direction, i.e. vertical. 

Static indentation tests were conducted on a Tinius Olsen electromechanical test machine 
at a crosshead speed of 5 mm/min.  The beams were placed on a flat support plate and 
indented with a 25 mm diameter cylinder across the whole width of the beam cross-section. 
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Dynamic indentation tests were conducted in an instrumented falling weight tower with an 
8.2 kg impactor at a impact speed of 2 m/s corresponding to an energy level of 15 J. 

For simulation, only one-half of the sandwich beam was modelled because of the 
geometric and material symmetry.  Single integration point solid elements are used to model
the sandwich face-sheets and core.  The calibrated and validated material models described
above are also used. 

For the quasi-static indentation tests, three distinct regions of deformation were observed. 
The initial response is linear elastic followed by non-linear yielding.  This non-linear 
behaviour is induced by progressive localised core crush under the cylindrical impactor along 
with membrane stretching of the top skin. As the impactor moves down into the specimen,
the ends of the sandwich are also pulled up.  Finally, there is a sharp load increase as foam
densification occurs.  Minor fibre fracture, matrix cracks and delamination were observed in 
the top face-sheets.  For brevity, only the experimental and simulation results for the 2 mm 
face-sheet beams are presented here.  The simulation force-displacement curves and predicted 
damage showed good agreement with quasi-static experimental observations as depicted in 
Figure 9 (a).

The dynamic force-displacement curves are similar to the static case.  However, the
impactor rebounds before foam densification occurs.  The dynamic simulation results shown 
in Figure 9 (b) are also in good agreement with the experimental results. 
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Figure 9:  Comparison of the experimental and simulation force-displacement and failure mode results for the (a)
quasi-static and (b) dynamic indentation tests for the 2 mm face-sheet TPC sandwich beams.
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Three-point bending of TPC sandwich beam 
Quasi-static and dynamic three-point bending tests were also used to validate the calibrated 

material models [8].  The quasi-static tests were conducted in a Tinius Olsen 
electromechanical test machine at a crosshead speed of 10 mm/min.  A 25 mm diameter
cylindrical impactor is used to apply a load to the centre of the beam. The bending specimens
were 250 mm long with a width of 30 mm and nominal core thickness of 25 mm. They were 
simply supported over a span of 200 mm on 10 mm diameter cylindrical steel supports. 
Sandwich beams with three different skin thicknesses were investigated, 1, 2 and 3 mm [7].

For simulation, as with the indentation model, only one-half of the sandwich beam is 
modelled.  Single integration point solid elements are used for all components.  The 
cylindrical impactor and supports were modelled as rigid bodies.

Fracture in the foam was modelled through a maximum principal strain fracture criterion 
combined with element erosion.  Elements are eroded when the maximum principal strain
reaches a specified value:

1 p  element erosion (1)

where 1 is the maximum principal strain and p is the maximum principal strain at failure.
This fracture criterion was also used to model failure at the sandwich beam skin-core

interface.  The maximum principal strain, p, was numerically calibrated using an iterative
procedure where values for p were determined by correlation of simulations with
experimental force-displacement and failure mode results. 

Only the experimental and simulation results for the 2 mm face-sheet beams are discussed
below.  Figure 10 (a), shows a comparison of the simulation and experimental force-
displacement results for the 2 mm skin sandwich beam under quasi-static loading.  The beam
response is linear elastic, followed by non-linear yielding up to a maximum load, after which 
an abrupt load drop occurs due to core shear fracture.  The predicted response up to the point 
of failure agrees well with the experimental results as depicted in Figure 10 (a).  However, the
predicted post-failure response deviates from the experimental curve as element erosion 
results in sharp, large load oscillations up to a displacement of 18 mm after which the load
drops to zero.  The asymmetric core shear fracture and skin core debonding observed in the 
actual test has been well predicted by the simulation as shown in Figure 10 (a) 

Figure 10 (b) shows a comparison of the simulation and experimental force-displacement
results for the 2 mm skin sandwich beam under dynamic loading.  The predicted force-time
history shows good agreement with the general shape of the experimental response.  The
predicted initial peak load shows excellent agreement with the experimental results. 
However, the second peak load is over estimated by 20% and leads the experimental second 
peak load by 0.42 ms.  The primary failure modes were symmetric core shear fracture and 
skin-core debonding which have been well predicted by the corresponding simulation.
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Figure 10:  Comparison of the experimental and simulation force-displacement and failure mode results for the
(a) quasi-static and (b) dynamic three-point bending tests for the 2 mm face-sheet TPC sandwich beams.

4.4 Structural validation sandwich modelling 
Following the successful calibration and validation of the coupon level sandwich models,
initial predictive analysis has been carried out on a novel complex shaped structural
thermoplastic composite sandwich mounting beam for a metro train bogie designed to replace 
a conventional metal/wood-based design.  A finite element model of the mounting beam,
shown in Figure 11, is based on the previously described material models for the sandwich 
face sheets and core materials.  The finite element model was used to analysis the structural
performance of the sandwich beam under proof loads imparting both torsion and bending on 
the beam.  For these preliminary simulations, predicted results showed good agreement with 
test data in terms of both stress levels and structure deflections. Impact analyses are a subject 
of continuing work. The validated model was used to optimise the design of the demonstrator 
component without the need for costly prototyping and testing. 
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Figure 11:  Predicted stress distribution in the TPC sandwich mounting beam under proof loading
(stress in GPa).

5 CONCLUSIONS
A practical modelling methodology involving the use of an advanced composite material

model and associated material characterisation tests has been developed for impact loading of 
sandwich structures manufactured using a vacuum moulding process.  The thermoplastic
composite face-sheets were modelled with the advanced LS-DYNA™ MAT 162 composite
material model.  The values for the damage parameters required in MAT 162 were obtained 
through an inverse modelling procedure involving the correlation of simulations with a series 
of static and dynamic coupon tests including shear, tension and compression.  The calibrated 
material model was validated using coupon three-point bending and dynamic falling weight 
dart impact tests.  It was shown that a limitation of the MAT 162 model was the coupling of 
the tensile and compressive damage parameters which led to the need for minor recalibration
during the validation phase. 

The quasi-static and dynamic response for a sandwich beam under indentation loading was 
well predicted by the finite element model. 

For quasi-static bending of the beams, good agreement for both load-displacement and 
failure was achieved between simulations and experimental results.  For dynamic bending, the 
elastic response, initial peak loads and the occurrence of core shear fracture and skin-core
debonding were also simulated well. However, under the dynamic loading rates, the more
complex post initial failure response involving beam vibration and multiple load peaks was 
more difficult to accurately simulate.

The validated sandwich model has been successfully applied to the structural analysis of a
full-scale demonstrator component.
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The work presented in this study improves the confidence in using predictive finite 
element techniques for modelling the performance of composite sandwich structures under 
static and dynamic loading.  Predictive analysis contributes to the safe and efficient design of 
composite sandwich components without the need for costly test programs and by providing 
more in-depth understanding of the mechanical response of these sandwich constructions. 
Additionally, this work has shown the potential suitability of TPC sandwich structures for 
application in advanced transportation related technologies. 
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Abstract: The application of layerwise theories to correctly model the displacement field of 

sandwich structures or laminates with high modulus ratios, usually employs plate or 

facet-shell finite element formulations to compute the element stiffness and mass matrices for 

each layer. In this work, a different approach is proposed, using a high performance 

hexahedral finite element to represent the individual layer mass and stiffness. This 8-node 

hexahedral finite element is formulated based on the application of the enhanced assumed 

strain method (EAS) to resolve several locking pathologies coming from the high aspect 

ratios of the finite element and the usual incompressibility condition of the core materials. The 

solid-shell finite element formulation is introduced in the layerwise theory through the 

definition of a projection operator, which is based on the finite element variables 

transformation matrix. 

The new finite element is tested and the implemented numerical remedies are verified. The 

results for a soft core sandwich plate are hereby presented to demonstrate the proposed finite 

element applicability and robustness. 

�� �����	
�����


Sandwich structures with soft cores, like those achieved when inserting thin viscoelastic 

layers or foams between two stiff skin plates for damping purposes [1], are usually 
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complicated to simulate due to the difficulties related to the spatial model of the layered 

assembly, which must be able to accurately represent the high shear pattern of the core and, 

thus, the related damping mechanism. 

The usual approach, by means of a layered assembly of plate and solid finite elements with 

nodal linkage or rigid link elements [2-4], can lead to a hardworking and time consuming 

spatial modelling task, particularly to model three-dimensional shell-type structures. 

Moreover, the application of this layered approach to multiple layer sandwich plates, using 

several viscoelastic layers, is difficult and any reconfiguration of the treatment requires the 

modification of the entire finite element mesh, which is not a straight-forward methodology 

during design and optimization simulation tasks [4]. 

To simplify such cumbersome modelling task, layerwise finite elements [5-7] become popular 

since they are simple and user-friendly, being easily applied to complex geometry 

configurations by means of standard shell mesh generators and, additionally, easily tailored to 

different layering schemes, as this information is externally defined and directly used by the 

layerwise finite element during elemental matrix computation. The layerwise formulation is 

able to replicate the out-of-plane displacement field from the tabulated intrinsic element 

parameters and the bi-dimensional geometry, while maintaining the simplicity of its usage by 

the end-user. 

To compute the element matrices, plate-based or facet-shell formulations are usually applied 

[6], where plane stress conditions are considered at both layer and composite levels. Though 

this characteristic isn’t usually a limitation to the analysis of thin single or multiple core 

viscoelastic damped sandwich structures [6,7], it can restrict the application of such finite 

elements when analysing thick soft core sandwiches [8] like those achieved with cores made 

of cork compound materials. For this purpose, proper finite elements with complete 3D strain 

and displacement fields shall be used, capable of handling through-thickness strain gradients 

during deformation. 

Despite the spread use of shell and membrane elements to model thin structures in 

commercial codes, the interest in eight-node brick-type finite element formulations, based 

only in translation degrees-of-freedom, has been increasing over the last years [9,10]. 

Incorporating the kinematics of shell finite elements, although topologically equivalent to 

solid ones, these elements became known as “solid-shell” finite elements. Besides the simpler 

formulation, solid-shell elements can account for 3D material laws (contrary to plane stress-

based shells), double sided contact conditions and, finally, a direct and exact evaluation of the 

thickness strain and stress fields. 
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Regardless the direct 3D kinematics representation, standard solid finite elements possess 

strong deficiencies in reproducing the behaviour of thin-shell structures, leading to locking 

phenomena. For 8-node elements entirely based on a displacement formulation, these 

numerical deficiencies are responsible for the complete deterioration of results, being 

commonly referred as transverse shear and volumetric locking effects. Amongst the 

approaches to overcome these problems, the simplest and earliest of all proposed was the use 

of reduced numerical integration procedures, where the numerical evaluation of strain and 

stiffness matrices is carried out in an approximated form. This procedure is equivalent to 

mixed formulations, usually introducing a higher level of flexibility into the formulation, and 

attenuating the locking otherwise present. However, this procedure can lead to spurious zero 

energy modes, thus requiring stabilization methods.

Other techniques were proposed to alleviate locking effects, the most successful of them 

being usually classified as mixed methods. For these formulations independent field 

assumptions for strains, stress and/or incompatible displacements can be assumed, and 

afterwards introduced into the corresponding functional. These methods point to procedures 

such as the Assumed Natural Strain (ANS) approach [11] and the Enhanced Assumed Strain 

(EAS) formulation [12]. The latter, the EAS method, uses a three field mixed functional in 

terms of displacements, stresses and an enhanced strain field, relying on the introduction of 

strain-based enhancing variables into the formulation. In its original form, the total strain field 

is built up as a direct summation of the (compatible) symmetric gradient of the displacement 

and the enhanced strain field. The enhancing strain field is not subjected to any inter-element 

continuity requirement, and can be related to an incompatible mode-based field. 

In available solid-shell finite elements, enhanced assumed strain methods, assumed strain 

approaches and/or selective reduced integration procedures are usually combined to obtain 

robust formulations [10]. Departing from previous approaches, and to some extent following 

the works carried out for shell elements, a new class of solid-shell finite elements entirely 

based on the Enhanced Assumed Strain methodology was introduced in [17], for linear 

formulations, and extended to non-linear problems in [18]. The distinguish feature of the 

formulations is the solely use of EAS procedures to simultaneously deal with volumetric and 

transverse shear locking effects, besides improving the in-plane and mesh distortion 

sensitivity of the elements. 

The main goal of the present work is to establish an innovative approach to layerwise 

formulations for composites structures, relying on the use of solid-shell finite elements 

enhanced with strain-based variables. Such EAS finite elements represents the best choice to 

develop a layerwise based sandwich finite element including through-thickness deformation 
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capability and 3D displacement field description, without the numerical drawbacks of using 

conventional 3D continuum finite elements. 

�� 
���������
��������


Assuming that the laminated structure can be divided into n homogeneous material layers, the 

displacement field for an individual layer can be described as: 

{ } nk

w

v

u

k

k

k

k ,...,1    =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=u  (1) 

which can be derived from the global vector of generalized variables, { }d , from the relation: 

{ } [ ] { }dkk N=u  (2) 

The matrix [ ]kN  is a piecewise interpolation function matrix, being dependent of the layer 

index. 

In a similar way as the one applied in the usual plate-based layerwise models, this 

interpolation matrix defines the through-the-thickness displacement field. However, in this 

case this interpolation function is assumed to be directly described in the solid-shell finite 

element. Therefore, the finite element displacement field of the laminate can be mapped into 
several solid-shell variable vectors by using a transformation matrix, [ ]kP , relating the two 

variable fields: 

{ } [ ] { }dPd k
H
k =8  (3) 

where { } 8H
kd  is the usual tri-linear hexahedral finite element variable vector for layer k. 

Using this transformation matrix, the laminate finite element stiffness and mass matrices, as 

well as the force vectors, can be defined by the projection of the corresponding solid finite 

element matrices, [ ] [ ] 88 , H
k

H
k MK , and vector, { } 8H

kf , as: 
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where [ ] [ ] { } 888 ,, H
k

H
k

H
k fMK  are computed by using a robust hexahedral finite element 

formulation, which will be presented in next section.  
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The grounds of the Enhanced Assumed Strain method come from the classical work of Simo 

and Rifai [12]. The well known variational formulation inherent to the method, based on the 

three-field Veubeke-Hu-Washizu functional is here skipped for the sake of succinctness. The 

crucial point in EAS formulations is the enlargement of the displacement-related strain field, 

adding a new field of internal variables, the so-called enhancing parameters α .  

Similarly to displacement field u, which is interpolated in the finite element domain by the 
standard FEM strain-displacement uB  matrix, the enhancing parameters field is interpolated 

by a αB  matrix. At the element level, the enhancing strain field is added to the standard strain 

field in the form:  

ˆ ˆ
uα α

⎡ ⎤
⎡ ⎤= + = =⎢ ⎥⎣ ⎦

⎣ ⎦

u
ε ε ε B B B u

α
%% %  (5) 

being the strain field posed in vector form: 

{ }T=~
yzxzxyzzyyxx εεεεεεε  (6) 

The interpolation matrix for the enhancing counterpart is normally first defined in the 

convective frame (denoted with �).The transformation to the local reference frame (denoted 

with �̂ ) is performed in the standard form: 

ααα BT
J

J
B 0

0ˆ =  (7) 
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where αB  is defined with natural coordinates. The subscript “0” points to evaluations at the 

center of a standard element. T is the second order transformation tensor relating the 
isoparametric space and the local reference frame at a given point ( ), ,ξ η ζ , 
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 (8) 

where 1
ijJ −  relates to  the ij components of the inverse Jacobian matrix 1−J , 

1

x x x

y y y

z z z

ξ η ζ

ξ η ζ

ξ η ζ

−

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂⎢ ⎥=
⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂⎣ ⎦

J  (9) 

In the linear range, application of EAS method derives the following system of equations, 
 

ˆ ˆ

ˆ ˆ

uu u ext

u

α

α αα

⎡ ⎤ ⎧ ⎫⎧ ⎫
=⎢ ⎥ ⎨ ⎬ ⎨ ⎬

⎩ ⎭⎢ ⎥ ⎩ ⎭⎣ ⎦

uK K f
α 0K K

 (10) 

where each sub-matrix is defined in domain Ω  like follows: 
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u
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d

α
α

α
α

αα
α α

Ω

Ω

Ω

Ω

= Ω

= Ω

= Ω

= Ω

∫

∫

∫

∫

K B C B

K B C B

K B C B

K B C B

, (11) 

with C as the constitutive tensor. From equation (6) and given its discontinuity between 

elements, it is possible to condense out the enhancing field α  at the element level. This static 

condensation procedure lead to the displacement and enhanced-based equivalent stiffness 

matrix ˆ u α+K : 

( ) uuuuu ααααα KKKKK ˆˆˆˆˆ 1−+ −=  (12) 

Doing so, the unknown’s vector u%  can be determined in a conventional manner, 

( ) 1ˆ u extα −+=u K f%  (13) 

In the work of Alves de Sousa et al. [17], using the classical Gauss integration procedure with 

8 integration points, several EAS brick elements were proposed. The mathematical ground to 

derive the formulations was based on a subspace analysis. The subspace analysis made 
possible the proper choice of the enhanced strain operator αB , requiring at the same time the 

minimum number of enhancing parameters to circumvent both volumetric and transverse 

shear locking effects. 

In this work, the focus is given for the solid-shell HCiS12 solid-shell element. This element is 

defined by the following interpolation matrix for enhanced strain components, firstly defined 

in the convective frame: 
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 (14) 

using the compatible shape function: 

2 2 21
(1 )(1 )(1 )

2
Nα ξ η ζ= − − −  (15) 

The formulation is characterized by excellent performance in a wide range of applications 

concerning shell-type structures as stated in references [17] and [18], avoiding both 

volumetric and transverse shear locking phenomena. 

��
�
�������
 ����

The example hereby applied to verify the finite element formulation is based on the dynamic 

analysis of a sandwich plate with thin aluminum skins and a soft core with a high modulus 

ratio. Both thin and thick sandwich conditions are applied and two different Poisson ratios for 

the core material are also introduced in this example. The sandwich plate is considered to be 

clamped in one of its smallest sides and totally free at the remaining ones. 

The results obtained with the present finite element model (layw8) are compared with those 

obtained using a layered model approach with solid brick finite elements (Model 3H). More 

details on these layered approaches can be found in [4]. Additionally the results obtained by 

using a facet-plate layerwise finite element [6] are also presented. 

The plate was modeled by an 18x12 finite element mesh and, when using model 3H, 3 layers 

of hexa8 finite elements were applied through the thickness, one for each material layer. 

Similarly, 3 layers are used for the layerwise models. This through-thickness coarse spatial 

modeling, which does not introduce an important error in the interesting natural modes, 
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intends to avoid the large set of deformation mode shapes of the core that is obtained when it 

is represented by an higher number of solid layers in the model 3H or numerical layers in the 

layerwise models.  

Table1 - Geometry parameters and material properties of Example 1   

Geometry  

 Length     a mm300

 Width     b mm200

   1h mm1

 Thickness     2h mm40  / mm2

    3h mm1

Material properties  

•  Skins - Aluminum

 Young modulus    1,3E Pa91072×
 Poisson ratio    1,3ν 0.32
 Density    1,3ρ 3/2710 mKg

•  Core - hypothetic soft foam 

 Young modulus    2E Pa3102×
 Poisson ratio    2ν 0.25/0.49
 Density    2ρ 3/1140 mKg

Boundary conditions    C-F-F-F

    C: clamped / F: free 
 

The computed natural frequencies are listed on tables 2-3, where Fi and Ti stand for flexural 

mode of order i and torsion mode of order i, respectively. 
 

Table 2 - Natural frequencies of sandwich plate with soft core – Thick core (40mm) [Hz]     
 compressible core 0.25=2ν  incompressible core 0.49=2ν   

Mode  Model 3H layw4m layw8  Model 3H layw4m layw8 

F1 3.25 3.26 3.26  3.23 3.24 3.24 

T1 10.62 10.70 10.70  10.58 10.66 10.66 

F2 19.50 19.67 19.66  19.47 19.64 19.64 

T2 35.13 35.64 35.23  35.10 35.61 35.60 
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Table 3 - Natural frequencies of sandwich plate with soft core – Thin core (2mm) [Hz] 

 compressible core 0.25=2ν  incompressible core 0.49=2ν   

Mode  Model 3H layw4m layw8  Model 3H layw4m layw8 

F1 8.07 8.08 8.08  8.06 8.07 8.07 

T1 26.77 26.96 26.97  26.74 26.95 26.96 

F2 49.88 50.07 50.03  49.87 50.06 50.06 

T2 90.20 91.12 91.45  90.19 91.12 91.44 

The results for the layered model (model 3H) were obtained using a selective integration 

robust finite element (Nastran hexa8 finite element [19]), which provides a valuable reference 

to verify the efficiency of the implemented finite element. 

!�
"����
����

The proposed finite element provides a valuable tool for the simulation of laminates and 

sandwich structures. This finite element combines the flexibility of modeling, characterizing 

the layerwise models, with the robustness, accuracy and full-field description provided by the 

solid-shell finite element based on the EAS concept. The obtained results indicate that this 

novel modeling approach is a promising alternative for the layered models that are currently 

applied when full three-dimensional strain and stress field representation is required.  

#�
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Summary. The problem of local instability of the compressed facing of a sandwich panel is 
discussed in this paper. Proper estimation of wrinkling stress has become a challenging issue 
because of a strong tendency to optimize technical parameters and costs. The aim of the study 
is numerical and analytical analysis of bending of three-layer panels. Linear constitutive 
equations and identical elasticity modules in tension and compression are assumed. In 
practice, wrinkling stress depends on many factors, usually neglected in analytical solutions, 
though observed in experiments. In this paper we use numerical methods and hence we can 
allow for the loss of face adhesion or anisotropy of the core. Created models are validated 
and calibrated by experimental results. The analyses are carried out for various mechanical 
and geometrical parameters of the sandwich panel. The influence of these parameters on 
structural response is studied. The range of applicability of classical theoretical models is 
discussed basing on numerical examples. The study presented in the paper was inspired by 
sandwich panels producers, with the aim to increase safety and economy.  

 
 
 
1 INTRODUCTION 

Sandwich panels are used in industry for many years. They are usually composed of three 
layers: rigid, external faces and a flexible core. Important role in the analysis of the structures 
plays the contact between core and faces, evolution of the core parameters induced by creep 
and influence of thermal excitations. 

Classical approach to the problem of sandwich panels was presented in [1, 2]. The 
simplified theoretical models discussed in these papers have been widely used in an 
engineering practice. However, increasing industrial requirements enforce more precise and 
reliable analysis. Therefore, this issue has focused much attention in the last years and many 
papers went up, where modern FEM models were proposed [4, 8]. 

Apart from analytical and numerical solutions, real experiments still play important role to 
find behavior of those structures. They are one of the bases of the determination of the 
sandwich plate carrying capacity in EC standard [3]. Application of the modern experimental 
methods to the analysis of sandwich panels was presented in [5, 6, 7]. 
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The aim of the paper is to study the mechanism of local instability of compressed facing of 
the bending panel [4, 5]. Numerical and analytical models are created, validated and 
calibrated by the analysis of numerical and experimental results. The models may be 
particularly useful in evaluation of structure response subjected to, difficult to realize 
experimentally, thermal actions. Moreover, the models are used to the analysis of influence of 
structure parameters on the value of wrinkling stress. 

2 DESCRIPTION OF THE PROBLEM 
The paper is concerned on the problem of localized bending effects in sandwich panels. 

Our aim is to estimate the influence of the main structural parameters, namely panel depth, 
face thickness and core stiffness, on the wrinkling stress. 

Simply supported, one-span sandwich panel with the length L and the width B is 
considered. The structure consists of two thin and plain steel faces and flexible core. Both 
faces have the same thickness t, while depth of the core is D. The geometry of the structure is 
presented in Fig.1. 

 
Figure 1: Geometry of sandwich structure 

The panel is supported at its two opposites ends. Width of the supports is equal to b. 
Support conditions refer to real structures. Therefore, it was assumed that a base plate 
modeled as rigid body is lying at both supports [8]. Reference points describing respective 
boundary conditions of the whole support are localized in the middle of contact surface 
between lower face sheet and the supporting plate. For the left supporting base plate (detail A 
in Fig. 1) all three translations and the rotations with respect to axes x and z are equal to zero. 
Unconstrained rotation with respect to the axis y is assumed. The right base plate has 
additionally the possibility of the translation in the direction x. The sandwich panel is 
subjected to static, uniform distributed suction load on the lower facing. 
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The main attention in the analysis was focused on the behavior of the structure in bending. 
The problem of stress concentration and complex interactions between facings and the core 
were observed. The importance of the problems of debonding and local instabilities of the 
structure was emphasized in papers [6]. 

3 ANALYTICAL MODEL 
In the classical theory of sandwich panels all materials are assumed as linear elastic, 

homogenous and isotropic. The external facings are parallel. The Young modulus of the core 
is very low. Hence, normal stresses are negligible and shear stresses are constant in the core 
part. Usually, the sandwich panel is analyzed as a beam type structure. 

The problem of local instability of compressed facing grounded on the elastic foundation 
can be described by the differential equation 

( ) )()()()()( 01 xqxwkxwxwPxwB IIIIIV
F =⋅++⋅+⋅ . (1) 

The symbols BF1, w, k, w0 and q denote bending stiffness of the facing, transverse 
displacement, stiffness of foundation, initial displacement and transverse loading, respectively 
[2]. If we neglect the initial displacement field w0, the solution of (1) can be written in a 
simplified form: 

⎟
⎠
⎞

⎜
⎝
⎛⋅=

a
xwxw πsin)( 1 , (2) 

where the coefficient w1 corresponds to displacement amplitude and a is a half length of 
deformation wave.  

Assuming that the wave length decrease proportionally to the stiffness k with the 
proportionality factor f1 = a·k, a normal (compressive) force can be expressed as 

22

3
11

4

π
π

a
afBP F +

= . (3) 

Looking for minimum value of the force P we stipulate dP/da = 0 and thus arrive at 
3/1

1

1
42

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

f
Ba Fπ

. (4) 

Using (3) and (4), f1 and P can be expressed as: 
4/34/14/1

1 2 KBf ⋅= π , (5) 

2/12/12/123 KBP −⋅= . (6) 

Introducing a function (or in the simplest case - a scalar) f2, which is scaling a relation 
between the Young modulus Ec of the core, depth of the core D and stiffness of the foundation 
k: 
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2
2f

D
E

k c ⋅= , (7) 

the wrinkling stress is finally obtained as 

D
EB

t
f

t
P cF

cr
12

2
23 ⋅⋅==σ , (8) 

where t is the thickness of the compressed facing. Please note that the term of bending 
stiffness BF1=EFIF1 contains the Young modulus of the facing material EF and the moment of 
inertia of the facing IF1. 

The key point is to find the form of f2. Generally, f2 may depends on various geometrical 
and mechanical parameters. In the simplest case, this term is assumed as a scalar, which is 
calibrated to comply with experimental results. The laboratory tests are in progress and 
therefore the results will be presented on the conference. 

4 NUMERICAL ANALYSIS 
Numerical models were prepared in ABAQUS system environment. The span and width of 

analyzed sandwich structure are L = 4.40 m and B = 0.50 m. The following depths of the core 
were assumed D = 0.079 m, 0.099 m and 0.119 m. The width of supporting plates was 
b = 0.10 m. Thickness of facings was equal to t = 0.4 mm, 0.5 mm or 0.6 mm. 

Steel facings were assumed as elastic - ideal plastic material with the Young modulus 
EF = 210 GPa, the Poisson ratio νF = 0.3 and yield stress fy = 280 MPa. Facings were modeled 
using four node, doubly curved shell elements SR4 with dimensions 2x2 cm or 3x3 cm. 

The core of the panel was modeled using eight node linear brick elements C3D4. The core 
was divided into two layers of elements. The following parameters of the core material were 
assumed: νC = 0.05 and EC = 8 MPa, 6 MPa or 4 MPa. The isotropic and homogeneous core 
material was assumed at the first stage of the study. 

Between the compressed facing and the core, a layer of interface is introduced. The 
interface is modeled using COH3D8 8-node, 3D cohesive elements. Interactions between all 
parts are assumed as TIE type, which makes equal displacements of nodes. The option of 
leaving the rotations free was chosen. 

Elasticity uncoupled law for cohesive material of the interface is defined by the relation 
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(9) 

where tn is normal traction (stress) and ts, tt are shear tractions. Corresponding nominal strains 
are defined as εn = δn/T0, εs = δs/T0, εt = δt/T0 using separation δ and constitutive thickness of 
cohesive element T0. 

Quadratic nominal stress criteria was used in the model for damage initiation: 
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where . is Macaulay bracket with the usual interpretation. 
Damage evolution is displacement type with linear softening. The stress components of the 

traction-separation model are affected by the damage according to: 
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(11) 

The scalar damage variable G represents the overall damage in the material. The terms with 
overbar are the stress components predicted by the elastic traction-separation behavior for the 
current strains without damage. To describe the evolution of damage, an effective 
displacement is introduced: 

222
tsnm δδδδ ++= . (12) 

For linear softening, the damage variable G has the following form: 

( )
( )0max

0max

m
f

mm

mm
f

mG
δδδ
δδδ

−
−

= , (13) 

where 
max
mδ refers to the maximum value of the effective displacement attained during the 

loading history, 
0
mδ  refers to damage initiation and 

f
mδ corresponds to full damage. 

5 COMPARISON OF RESULTS 
The influence of mesh size on the numerical results was the first problem analyzed in 

numerical simulations. Three examples of the panel with the parameters D = 0.119 m, 
t = 0.5 mm, EC = 8 MPa and the mesh size of compressed facing 0.03 m, 0.02 m, 0.01 m were 
analyzed. It occurred that for various sizes of FEM elements, wrinkling stresses were 
different. It was presented in the Table 1. 

 
Mesh size 

[m] 
Wrinkling stress 

[MPa] 
0.03 78.95 
0.02 71.91 
0.01 71.71 

Table 1 : The influence of the mesh size on the wrinkling stress 
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Above results indicate that the size of the mesh may highly influences numerical solution. 

The mesh size should be considered in the context of wave length of wrinkled facing. If the 
mesh is coarse and not appropriate, the wrinkling stresses are overestimated. Evert and al. in 
[9] recommend the suitable mesh size about 1/8 of the length a, however this requirement is 
difficult to fulfill because of huge number of FEM elements.  

In the following examples the mesh size 0.02 m was used. The results received for various 
geometrical and mechanical parameters are presented in the Table 2. 

 
1 2 3 4 5 6 

Example D [m] t [mm] Ec [kPa] Wrinkling stress 
σcr [MPa] (FEM) 

σcr / f2 [MPa] 
(analytical solution) 

Ex. 1 0.119 0.50 8000 71.91 51.50 
Ex. 2a 0.119 0.50 6000 60.41 44.56 
Ex. 2b 0.119 0.50 4000 55.78 36.38 
Ex. 3a 0.099 0.50 8000 71.25 56.41 
Ex. 3b 0.099 0.40 8000 67.02 50.45 
Ex. 3c 0.099 0.60 8000 85.99 61.79 
Ex. 4 0.079 0.50 8000 86.09 63.15 

Table 2 : Wrinkling stress for various structure parameters 

 
Numerical and analytical results demonstrate considerable similarity. Relations between 

mechanical parameters and stresses seem reasonable. Higher wrinkling stresses are received 
for smaller core depth and higher stiffness of core and facing. The results in columns 5 and 6 
are in good agreement for the value of f2 equal to 1.40. The agreement is also in the sense of 
wave length. The value a = 0.0424 m received in the example 1 using updated analytical 
model is confirmed by the distance between wrinkles visible in Fig. 2. 

These results can be compared to the wrinkling stress calculated according to the equation 
given by Stamm and Witte in [2]  

3819.0 Fcccr EEG⋅=σ , (14) 

or according to corrected equation, where initial imperfections are taken into account: 

35.0 Fcccr EEG⋅=σ , (15) 

In the examples 1, 3a, 3b, 3c and 4, the stresses (14) and (15) are equal to 152.06 MPa and 
92.83 MPa, respectively. Furthermore, using (14) and (15) the same results would be obtained  
in case of micro-profiled facing. It is because in these equations wrinkling stress doesn't 
depend on facing stiffness.  

Our recently conducted experimental tests indicate that neither analytical nor numerical 
models describe properly the phenomenon of the local instability of the sandwich panel yet. 

 

1185



Zbigniew Pozorski 

 

 
Figure 2: Local effects in bending of sandwich panel: normal stresses and wrinkles in the steel upper facing 

in direction x 

6 CONCLUDING REMARKS 
The numerical and analytical analysis as also laboratory tests proved that bending of the 

sandwich panels and occurring local effects are a complex problem. Various parameters have 
influence on the results, namely: geometrical values as panel depth and facing thickness and 
material features of the core and facings. The presented examples verify classical approach to 
the problem of wrinkling stress of the sandwich panel and demonstrate that hitherto existing 
in engineering practice simplifications can lead to considerable errors. 

Proposed analytical approach express the wrinkling stress as a function of the most 
important parameters of sandwich structure. In terms of quality, the analytical and numerical 
solutions are in good agreement. In spite of this, the existing models should be improved with 
respect to experimental results. Developed models may be particularly useful in evaluation of 
the structure response subjected to the difficult to realize experimental actions and can 
significantly minimize number of laboratory tests and costs. 
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Summary. The skin wrinkling phenomenon was investigated in case of ultra light sandwich 
structures with honeycomb core manufactured by one shot vacuum bag processing. A relation 
between process pressure and compressive strength of the skin was established. It was 
observed that the size of the adhesive menisci between honeycomb cell walls and skin and the 
waviness of the skin increased with process pressure. As these two effects have antagonist 
influence on compressive strength of the skin, an optimal process pressure equal to 0.7 bar 
was identified experimentally and confirmed by an analytical model. 

1 INTRODUCTION 
Composite sandwich structures are very often used for all applications requiring high 

stiffness and strength with minimal weight. High-tech applications such as satellites, ultra 
light solar airplanes or solar cars require pushing this type of structures to the limit in terms of 
lightweight. To this end, sandwich structures with very thin skins and light honeycomb core 
weighing less than 1 kg/m2 are used. While traditional sandwich structures used in boat hulls 
or commercial airplanes have often been studied and optimized, the ultra light sandwich 
structures require particular attention in designing and manufacturing. Indeed, these structures 
are extremely sensitive to local buckling of the very thin skins, either through wrinkling or 
dimpling [1, 2]. Furthermore, this failure mode is very sensitive to local imperfections of the 
skin which can dramatically reduce the strength of the structure [3-5]. Therefore the 
processing of ultra-light sandwich panels has to be studied very carefully in order to minimize 
the local imperfections in the skins.  
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During one shot manufacturing of sandwich panels with vacuum bag processing, the face 
sheet on vacuum bag side presents waviness due to the skin penetration into honeycomb cells 
[4, 6, 7]. This phenomenon decreases significantly the strength of the sandwich panel when 
the skin is under compressive loads. As the skin waviness is dependent of the level of vacuum 
applied during curing, the relation between processing pressure, i.e. the difference between 
atmospheric pressure and pressure in vacuum bag, and wrinkling load was studied in order to 
determine the optimal process conditions. The process pressure changes not only the waviness 
of the skin, but it is also expected to influence the formation of the adhesive menisci between 
honeycomb cell walls and skins. The relation between the amount of adhesive in the menisci 
and the wrinkling load was therefore considered first.  

2 MATERIALS AND METHODS 
Three different kinds of ultralight sandwich structures were fabricated in order to evaluate 

the dependencies between process pressure, waviness of the skin, adhesive weight in menisci 
and failure load of the skin. All the samples were produced with the same materials and their 
weight ranged from 700 to 800 g/m2. The skins comprised two layers of 70 g/m2 UD carbon 
fibers prepreg with EH84 epoxy matrix (Hexcel) at 0 and 90° respectively. The Nomex®

honeycomb core was 29 kg/m3 and the hexagonal cell size, i.e. the distance between two 
parallel cell walls was 3.2 mm. The core was 8 mm thick. The ribbon direction of honeycomb 
was parallel to the length direction of the sandwich panel. An epoxy adhesive (VTA 260 from 
Advanced Composite Group) was used to bond the skins to the core.  

The first kind of samples was devoted to study the effect of adhesive weight in the resin 
menisci on the compressive failure load of the skin. The sandwich samples were fabricated in 
one shot with vacuum bag process. As during one shot curing, the skin on vacuum bag side 
had a lower quality due to waviness, the study concentrated on the smooth skin on mould 
side. The effect of the waviness of the skin on vacuum bag side was considered on the other 
types of samples. Five different adhesive weights between 0 (no supplementary adhesive was 
used) and 100 g/m2 were chosen for the smooth side by using the adhesive deposition method 
developed by Rion et al [7, 8]. The complete panel was cured under vacuum (-0.9 bar relative 
pressure) at 120°C during 100 min. An Al frame avoided lateral crushing when vacuum was 
applied as illustrated in Figure 1. A non-perforated film was placed on the top prepreg to 
avoid that resin flowed out of the prepreg. Fibre rowings were placed between the Al frame 
and the non-perforated film to allow air to circulate. As the film prevented air circulation 
through the thickness of the skin, the vacuum was only applied from the sides of the panels 
and a good vacuum could not be ensured in the honeycomb cells. 

The samples of the second type were produced to study the influence of the processing 
pressure on the strength of the panel. To allow controlling the vacuum level in the honeycomb 
cells during curing, the panels were processed in two steps. The wavy skin was fabricated 
first. The honeycomb was laid onto a plate with a breather cloth in-between channelling the 
air under the honeycomb. The adhesive film and carbon prepreg were then laid onto the 
honeycomb and then the consumables were stacked as described in Figure 1. The breather 
cloth and plastic grid on the top of the panel are not useful during first cure to drain air 
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because the air was drained below the honeycomb, but it was placed to have the same 
stacking on the surface as for conventional one shot vacuum processing. Five different 
relative vacuum pressures (i.e. Pv – Patm, where Pv is the absolute pressure in vacuum bag and 
Patm the atmospheric pressure) were used: -0.1; -0.3; -0.5; -0.7; -0.9 bar. In a second step, the 
second skin was laid on the Al plate, the honeycomb with the first skin already cured was 
placed on it with all the consumables and it was cured with -0.9 bar relative vacuum pressure. 
The vacuum was applied during 5 hours before the second curing cycle began to allow air to 
circulate to create vacuum in the honeycomb cells. A 50 g/m2 adhesive film was used to bond 
both skins to the core. 

The third type of samples was fabricated with the same lay-up and adhesive quantity as the 
second type, but in one shot. Various relative vacuum pressures (-0.1, -0.5, -0.7, -0.9 bar) 
were used as for the second type of samples, but as honeycomb cells were closed on both 
sides by the carbon skins during curing, the absolute pressure in the honeycomb cells could be 
considerably higher than the one under the vacuum bag. The vacuum was applied during 12 h 
before curing cycle began to allow air circulation. 

Figure 1: Vacuum processing layout of the sandwich panels cured in one shot.

The panels were cut using a diamond saw in 7 samples of 30 mm width and 450 mm length 
and tested in 4-points bending. The span between the outer supports in 4-points loading was 
400 mm and 100 mm between the loading points. Small carbon plates of 18 mm width and 
1.5 mm thickness were placed under the loading points to avoid local indentation. 

The waviness Wmeas of the skin was measured on micrographs of polished cross-sections of 
the sandwich structures. Figure 2 shows the measured waviness, i.e. the height difference 
between the top of honeycomb cells and the lower point of the skin in the middle of the 
honeycomb cell. The size of the adhesive menisci between honeycomb cell walls and carbon 
skin was also measured on the polished cross-sections and the weight of adhesive in the 
menisci calculated according to a geometrical model of the menisci [8]. 

Figure 2: measurement of the amplitude of the waviness on the micrographs of cross-sections 
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For calculating the wrinkling load of the skin in compression, the bending stiffness of the 
face sheet has to be known accurately. Therefore, after the test of the sandwich beams in 4-
points bending, a part of the skin of 90 mm length was cut from the smooth side of the beams. 
The honeycomb was removed from the skin by cutting it with a cutter at the top of the 
adhesive menisci. The stiffness of the skin reinforced by the adhesive menisci was measured 
in 3-points bending, with a span of 50 mm.  

3 MODELLING OF WRINKLING PHENOMENON 
As all the samples tested in 4 points bending broke due to wrinkling of the skin in 

compression between the two loading points as illustrated in Figure 3, this particular failure 
mode was investigated.The wrinkling problem has been extensively studied by numerous 
authors. Ley and al. [1] made a review of the most common used models. All the models are 
based on the same assumption of compressed skin laying on a continuous elastic foundation. 
The main difference between the various models is the modeling of the elastic foundation 
according to the core used. When honeycomb core is used, the anti-plane stress assumption is 
often used, i.e. the core is considered to have an in-plane stiffness being zero and so to have 
only normal stresses perpendicular to the panel and shear stresses in zx and zy planes, where z 
is perpendicular to the panel. The model developed by Gutierrez and Webber [9] which was 
especially developed for bending of sandwich panels uses this assumption and is then well 
adapted to the case studied in this paper. This model also takes in account the elastic tension-
bending coupling in asymmetric composite skins. In fact it was noticed that considering the 
coupling changed the wrinkling load by less than 1% in the present case, which was then 
neglected to simplify the study. The equilibrium equations for the skin under compressive 
load as represented in Figure 3 are then  

2

2 xz z d

d uA
dx

4 2

4 2 z z d

d w d wD N
dx dx

 (1) 

where u et w are the displacements in length and out of plane directions, xz the shear stress in 
the core, z the normal stress in the core, A the coefficient A11 of the ABD matrix of the skin 
calculated with classical laminate theory, D the bending stiffness of the skin and N the load 
per unit width in the skin. The equilibrium equations of the core are given as 

2
1

2
xz

c c

z d kw z
E dx E

3 2 2
1

26 2c c c

z d z dku z
G E dx E dx 1

xz
z

dz k
dx

 (2) 

where k1 is a coefficient function of x only. The shape of the skin is considered to have a 
sinusoidal form, and thus the shear stresses in the core, the normal stresses in the core and the 
coefficient k1 also have a sinusoidal form: 

sin xw W
l

cosxz xz
x

l
sinz z

x
l 1 1 sin xk K

l
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where l is the half-wavelength of the wrinkling form. With the assumption that the 
displacements of the top of the core are the same as the middle of the skin (valid for thin 
skins), equations (2) can be substituted in equations (1) and using the sinusoidal forms, we 
obtain the equation 

8 6 4 2

1 2 3 4 5 0q q q q q
l l l l

 (4) 
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E Nq
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By solving numerically equation (4), the wrinkling line load N in the face can be calculated 
as a function of l. The value of l giving the lowest load corresponds to the critical wavelength 
and gives the critical wrinkling load of the beam.  

In order to take into account the adhesive layer used for core to skin bonding in the model, 
the bending stiffness of the skin is replaced by the bending stiffness of the skin with adhesive 
menisci, which was measured with the various adhesive weight.

Figure 3: (left) schematic view of the wrinkling phenomenon of the skin under compression during bending of 
the sandwich beam. The core is considered as a continuum. d is the distance between the center of the two faces. 

(Right) Failure mode of the skin in compression. The skin became locally unstable and crushed in the core.

This wrinkling formula is only valid for beams with perfectly flat skins. However the skins 
always contain imperfections. Particularly, the waviness caused by vacuum bag processing 
changes the wrinkling load and has to be taken in account in the model. Indeed, the initial 
deflection of the skin will increase during loading and can cause either compressive failure of 
the core, debonding of the skin, shear failure of the core, or local failure of the skin due to 
compression and bending deformations. The classical approach to take the initial waviness in 
account is to consider that the skin as a sinusoidal shape of amplitude W0 and half-wavelength 
l0 before loading, so that the deformed shape has the form  

0 0
0

sin xw w W W
l

 (6) 

With the honeycomb core, l0 is the distance between two cells rows, i.e. 2.77 mm with 

1192



Julien Rion, Samuel Stutz, Yves Leterrier and Jan-Anders Månson. 

3.2 mm cell size. The amplitude of the waviness measured in the panels Wmeas can not be used 
directly for W0, because the wave measured has a width limited to the cell size, the skin being 
maintained flat on the cell walls, while the wave extends on the full width of the beam in the 
model. This discontinuity of the wave in the width direction will significantly reduce the 
sensitivity to waviness of the structure, and a factor  = Wmeas / W0 has to be identified to use 
the measured waviness in the model. The equilibrium equations (1) for the skin become 

2

2 xz z d

d uA
dx

4 2 2
0

4 2 2 z z d

d w d w d wD N N
dx dx dx

 (7) 

By combining it with equations (2), (3) and (7), one obtains the amplitude of shear stresses in 
the core xz
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Then by using equations (2), the amplitudes of the coefficient k1 and of the normal stress in 
the core z are: 
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With equations (8) and (9) the critical load N causing shear stresses or normal stresses equal 
to the strength of the core can be calculated. The maximum local compressive strain in the 
face due to the compression and the local bending of the face is:  

2 2

2 2
11 0 11

m
m

d w N Nh W h
dx A l A

 (10) 

where h is the distance from the neutral axis of the face to the most loaded fibers, i.e. 40.5 m
for the 0/90° laminate used. By setting this strain equal to the maximum compressive strain of 
the prepreg, the critical load can be determined for this failure type. The lowest of the loads 
calculated for the different types of failure is the critical load of the structure. 

4 RESULTS 
4.1 Flat skins 

The failure strength of the sandwich samples increased with adhesive weight. This can be 
explained by the increased size of the adhesive menisci on the skin which increased 
significantly the bending stiffness, as shown on Figure 4. Due to the geometry of the adhesive 
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menisci, for a given adhesive quantity, the reinforcing effect is much more pronounced with 
menisci than with an even adhesive layer. 
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Figure 4: Measured bending stiffness of the skin measured in 3-points bending as a function of adhesive weight 
in the menisci for skin to core bonding. The theoretical stiffness calculated with CLT for an even adhesive layer 

is also represented. 

By inserting in the wrinkling model the relation between the bending stiffness and the 
adhesive weight determined in Figure 4, the critical wrinkling load and corresponding critical 
half-wavelength can be calculated as a function of adhesive weight in the menisci. The result 
is represented in Figure 5 and the critical load corresponds well to the experimental data, with 
errors smaller than 5%. The critical half-wavelength, which is calculated in the model by 
considering a continuous core, ranged from 2.3 to 3.2 mm, which is in fact close to 
honeycomb cell size. The elastic foundation is thus not continuous in the order of magnitude 
of the wavelength. However, a line in the width direction of the beam always crosses the same 
number of honeycomb cell walls independently of the position in length direction of the 
beam. The support of this line is therefore about constant in the length direction, so that the 
properties of the foundation can be considered as constant in length direction and the 
wrinkling model is thus still valid.  

Even though the skin was cured against the Al plate, a small initial waviness can not be 
completely avoided. Furthermore, as the half-wavelength of the preliminary deformation 
(2.77 mm) is close to the critical half-wavelength calculated for wrinkling of perfectly flat 
skin, the initial waviness will highly influence the strength of the beam. An arbitrary small 
waviness W0 = 0.5 m was used to calculated the critical loads for core compressive and shear 
stresses and local strains in the skin. With this small initial deformation, the failure loads for 
all three models are very close to the wrinkling load calculated and are represented in Figure 
5. Predicted loads for shear failure of the core and local compressive failure of the skin are 
identical and greater than the failure load for core compressive failure which is close to the 
wrinkling load. The failure mode is thus a coupling between local skin instability and core 
compressive failure, what is confirmed by the observation of the broken sample illustrated in 
Figure 3. So when the skin in compression is very smooth, the failure load can be predicted 
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accurately either by the wrinkling model or by considering a small initial imperfection 
causing compressive failure of the core, and taking in account the stiffening effect of the 
adhesive menisci on the skins. 
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Figure 5: compressive load per unit width in the skin at failure under 4-points bending and critical half-
wavelength for wrinkling as a function of adhesive weight in the menisci for core to skin bonding. The critical 

loads for the different types of failure are represented. 

4.2 Influence of the process pressure on microstructure 
Figure 6 and Figure 7 show cross-sections of samples cured respectively in two steps and 

in one shot with relative pressure in vacuum bag ranging from -0.1 to -0.9 bar. Figure 8 shows 
the measured adhesive weight in the menisci and the waviness amplitude as a function of 
process pressure. It is important to remind that the pressure represented is the relative pressure 
in the vacuum bag. The actual absolute pressure in the honeycomb cells may be however 
significantly higher than the absolute pressure in vacuum bag during one shot curing due to 
the low permeability of the skins and consumables used. The dependence between process 
pressure and skin waviness and adhesive weight in menisci is evident. The waviness and 
adhesive weight increased when the relative pressure in vacuum bag diminished. The increase 
is less pronounced for the samples cured in one shot because the vacuum was not good in the 
honeycomb cells due to the low permeability of the lay up as explained previously. As the 
waviness should be 0 when no pressure is applied, the data were fitted with either a power law 
of the pressure applied or a linear fit as illustrated in Figure 8. 

For the samples cured in two steps, the size of the adhesive menisci forming between core 
and skin increased between -0.1 and -0.3 bar pressure in the vacuum bag and then stabilized. 
When pressure was exerted by the honeycomb cell wall, the skin was compacted under the 
honeycomb cell wall and prepreg resin flowed in the menisci in addition to the 50g/m2

adhesive film. As the amount of resin is limited the meniscus size does not change any more 
above a sufficient pressure level. When low pressure is applied, the menisci form only with 
the adhesive film near the cell wall. For the samples cured in one shot, the menisci are almost 
inexistent at -0.1 bar relative pressure in vacuum bag. This is due to bad air circulation in  
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Figure 6: Micrographs of cross sections of the wavy side of sandwich panels cured in two steps. The skin laying 
on three honeycomb cell walls and bonded with adhesive menisci can be observed. The relative pressure applied 

during vacuum curing were -0.9, -0.7, -0.5, -0.3 and -0.1 bar. 

Figure 7: Micrographs of cross sections of the wavy side of sandwich panels cured in one shot. The relative 
pressure applied during vacuum curing were -0.9, -0.7, -0.5 and -0.1 bar. 
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honeycomb cells closed by the two skins, causing the pressure to increase when temperature 
rose. Some air flowed out of the cells through the skin and forced adhesive and prepreg resin 
to flow out. This can be seen in Figure 7d where a layer of resin is on the top of the prepregs 
of the panel cured with -0.1 bar relative pressure in vacuum bag. This flowing effect was 
more pronounced on vacuum bag side that on the Al mould, what explains that the resin fillets 
were greater on mould side than on vacuum bag side as shown in Figure 8. To fit the data by 
taking in account the limited amount of adhesive available, functions starting with a finite 
adhesive weight growing asymptotically to the limit adhesive quantity were chosen and first 
order exponential decay functions were used as illustrated in Figure 8. 
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Figure 8: Adhesive weight in the menisci (left) and height of the waviness Wmeas (right) measured on cross-
sections as a function of process pressure for the samples of the samples cured either in two steps or in one shot  

4.3 Influence of the process pressure on strength 
Figure 9 shows the strength of the panel manufactured with various vacuum pressures and 

tested in 4 points bending. Interestingly, the strength of the beams increased first when the 
relative pressure in vacuum bag was decreased, passed by a maximum and then decreased. 
The same behaviour was observed for the panels cured in two steps and in one shot, only the 
maximum strength was obtained at different pressures, respectively -0.3 and -0.7 bar relative 
pressure in vacuum bag. The strength increase is due to the quick increase of adhesive 
quantity in menisci when relative pressure in vacuum bag decreases. Then the adhesive 
quantity stabilizes and the increasing waviness of the skin decreases the strength of the face. 
The maximum strength of the panels cured in two steps is slightly higher than the one of 
panels cured in one shot. This is due to the bigger size of the adhesive menisci obtained with 
two steps curing as was observed in Figure 8. 

In order to take in account in the model the discontinuity of the waviness in the width 
direction of the beam which significantly reduced the sensitivity to initial waviness, the factor 

 = Wmeas / W0 was determined to be 25 by adjusting the model to the experimental data 
obtained with the panels cured in two steps. Figure 9 shows the evolution of the critical 
compressive load per unit with in the skin calculated by the models for the different types of 
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failure as a function of the process pressure. Among the models predicting the different 
possible failure types of the skin in compression, the one considering compressive failure of 
the core give the lowest failure load. Thus, this mode is the most sensitive to the initial 
imperfections of the skin and therefore determines the failure load of the beam. With the 
parameter defined previously the model giving the critical load for core compressive failure 
is in good agreement with the experimental data with errors less than 5% for both the panels 
cured in two steps or in one shot. For the panel cured in one shot, the model slightly 
overestimates the failure load at -0.1 bar relative vacuum pressure due to the bad compaction 
of the skin at low pressure which was not accounted for. Furthermore, the curve showing 
critical load fore core compressive failure has exactly the same tendencies as the experimental 
data, the load increasing first quickly when relative vacuum pressure decreases, then passing 
through a maximum and decreasing. The model confirms the existence of an optimum process 
pressure controlled by the interplay between skin waviness and formation of adhesive menisci 
at the skin / honeycomb interface. The model and the experimental data give the same optimal 
pressure in the vacuum bag for the sandwich panels cured in two steps at about -0.3 bar for 
the wavy skin. The optimal pressure for the panels cured in one shot is around -0.7 bar, but 
the strength does not change significantly between -0.5 and -0.9 bar. Finally, the critical 
failure mode predicted by the model as the compressive failure of the core is confirmed by 
observing the broken samples where the skin crushed the core, as illustrated in Figure 3. 
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Figure 9: Evolution of the compressive load per unit width in the face at failure during 4-points bending tests as 
a function of process pressure for the samples cured in two steps (left) and in one shot (right). 

5 CONCLUSIONS 
The bending strength of ultralight sandwich structures (700 to 800 g/m2) is very sensitive 

to the process pressure used during manufacturing. By using vacuum bag processing with 
various pressures and adhesive weights, it was shown that the waviness of the skin and the 
size of the adhesive menisci forming between honeycomb cell walls and skins have a direct 
influence on the wrinkling strength of the skin. During one shot vacuum bag curing, the 
waviness of the skin and the size of the adhesive menisci both increase with process pressure, 
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having antagonist effects on the strength. An optimal process pressure has been identified at -
0.7 bar relative pressure in vacuum bag. This pressure is clearly related to the materials used, 
and also to the curing cycle parameters, a higher temperature creating for example a higher 
pressure in the honeycomb cells. 

A model has been developed to predict the wrinkling load of the skin as a function of 
process pressure by taking in account the influence of adhesive weight in the menisci and the 
waviness of the skin. A good agreement was found between experimental data and the model 
which allows better understanding of the failure mechanisms controlling wrinkling load.  
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Summary. In this paper deepdrawing FE analyses are performed on full three-dimensional 
and geometrically detailed thermoplastic sandwich plates with honeycomb cores. Forming 
analyses with bending in one and two directions are conducted. The importance of the out-of-
plane core shear strength in these deepdrawing processes is pointed out. These full three-
dimensional models require a considerable amount of CPU-time. The feasibility of strategies 
for reduction of calculation time is considered. 

1 INTRODUCTION 

Sandwich constructions have proven to be very useful in many application areas due to 
their high stiffness and strength to weight ratios. However, their production is limited to flat 
plates. A further expansion of their use is only possible if they can be formed into complex 
shaped parts. 

One can distinguish different families within the group of sandwich materials. These 
families differ from the way the face sheets are supported by the core. This support can be 
homogeneous (e.g. foam cores), regional (e.g. perforated cores), structured (e.g. honeycomb 
cores), unidirectional (e.g. corrugated cores) or punctual (e.g. textile cores made out of pile 
yarns connecting the face sheets). 

Thermoplastic sandwich panels with foam cores have already been successfully 
thermoformed in short processing cycles, resulting in complex parts that can be used in 
application areas such as food packaging and automotive (Rozant et al. [1]). Rozant’s study 
revealed the importance of the temperature distribution through the thickness of the sandwich 
when thermoforming thermoplastic sandwich parts. In [2], Mohr and Straza formed 
successfully all-metal sandwich sheets with perforated cores. In another paper [3], Mohr 
pointed out the importance of the out-of-plane core shear strength in a sandwich deepdrawing 
process with bending in one direction. Based on theoretical considerations he derived a 
relation between the maximum allowed punch force (directly linked to the core shear 
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strength) and the minimum allowed deepdrawing tool radius for a certain configuration of the 
deepdrawing tools, sandwich geometry and sandwich material (core and face sheets). 

This relation is adopted in this paper to deduce the minimum forming radius of the forming 
tools for a certain thermoplastic honeycomb sandwich and the considered deepdrawing 
configuration with bending in one direction. The shear strength of the sandwich plate is found 
by performing a non-linear analysis on a geometrically detailed sandwich unit cell. This will 
form the first part of the paper. 

In the second part, deepdrawing FE analyses are performed on full three-dimensional and 
geometrically detailed sandwich plates with honeycomb cores. First, the previously outlined 
deepdrawing configuration with bending in one direction is assessed. The minimum tool 
radius that was found in the previous step is used. Afterwards, this tool radius is used to set up 
a deepdrawing configuration with bending in two directions. The analyses permit to validate 
the importance of the out-of-plane core shear strength in forming analyses, but need large 
CPU-times. 

In literature one can find contributions to the homogenisation of sandwich parts with 
honeycomb cores. With these homogenisation procedures equivalent sandwich models can be 
build, which should reduce CPU-time when used in FE-analyses. 

Most of these models are useful for linear analyses of these constructions. Gibson and 
Ashby [4] started from considerations about the deformation mechanisms of honeycomb cores 
to find all 9 material constants of the orthotropic honeycomb core. Grediac [5] pointed out the 
importance of taking the influence of the face sheets into account during the homogenisation 
of the core material. This is indicated in literature with: “skin effect”, “warping effect”, 
“thickness effect” or “bending effect”. Using the formalism of the Classical Lamination 
Theory (CLT) one can homogenise the whole sandwich by determining the sandwich stiffness 
constants. Hohe and Becker [6] did this using a method of strain energy equivalence between 
a geometrically correct sandwich unit cell and an equivalent plate element. The equivalent 
model is based upon a plate theory formalism (CLT) and is therefore confined: it cannot 
predict e.g. thickness reduction. The first approach (Gibson and Ashby) is more general than 
the second and can be expanded for a non-linear forming problem. 

This has been done by Xue and Hutchinson [7]. Non-linear analyses are performed on a 
geometrically detailed sandwich unit cell (like figure 1) under six elementary loading 
conditions to extract the equivalent core properties (stress-strain behaviour). They identified 
with these elementary stress-strain curves the parameters of the Hill yield criterion so that, 
besides the elastic modulus, also the yield stress is defined separately for each component of 
the stress tensor. 

2 SANDWICH CORE SHEAR STRENGTH AND MINIMUM TOOL RADIUS 

2.1 Sandwich specifications 

Figure 1 shows the considered honeycomb geometry. The representative unit cell is also 
indicated. This unit cell is used to evaluate the honeycomb core shear strength. The core cell 
size S is 6.4mm, the wall thickness tw is 0.16mm, the core thickness C is 7.3mm and the face 
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sheet thickness t is 0.8mm. The sandwich material is polypropylene (PP) at room temperature 
with a Young’s modulus E of 1700MPa, yield stress σ0 of 10MPa and hardening modulus ET

of 410MPa. These data are extracted from tensile tests on 200μm PP sheets with talc additives 
(from the company alkor). 

Figure 1: Honeycomb characteristics and 
sandwich unit cell definition Figure 2: Deepdrawing configuration for bending in one 

direction

2.2 Analysis of a deepdrawing configuration with bending in one direction 

Figure 2 illustrates the forming process configuration for deepdrawing with bending in 
single curvature. The vertical cell walls of double thickness are perpendicular to the plane of 
the figure. This set-up is used further in this paper for a deepdrawing analysis on a full 3D 
sandwich model. In [3], Mohr uses the equivalent mechanical systems of figure 3 to examine 
this forming process. With help of figure 3(a) Mohr singles out the region of high out-of-
plane shear stress where the sandwich is clamped between holder and die. The average shear 
stress <τ> in the critical cross section is then: 

SC

P
ττ ≤=

2

(1)

with τs the core shear strength. This shear strength is determined in [3] by finite element 
calculations on a geometrically detailed model of the core. 

An analytical expression for the punch force P is found using the equivalent mechanical 
system of Figure 3(b) by equating the internal strain energy for successive bending and 
unbending with the external work delivered by the punch force P. P is expressed relative to 
the yield stress σ0 of the considered PP: 
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Using equations (1) and (5) a direct relation is found between core shear strength Sτ  and 
minimum allowed tool radius R. Sandwich geometry, material characteristics and 
deepdrawing configuration (prescribing the mechanism of Figure 3(b)) are kept fixed. In the 
next section core shear strength is evaluated to determine the minimum allowed tool radius 
for the considered thermoplastic sandwich and deepdrawing process. 

Figure 3: Equivalent mechanical systems (Mohr [3]) for (a) the relation between punch force and highest shear 
force and (b) the deepdrawing deformation process (bending followed by unbending) 
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2.3 Shear strength and minimum tool radius for the considered thermoplastic sandwich 

A sandwich unit cell finite element model is built using 4-node, reduced integration shell 
elements; S4R in ABAQUS (figure 1). In this model the influence of the face sheets on the 
equivalent core properties is accounted for (according to the early work of Grediac [5]). 

To simulate the out-of-plane shear behaviour, a deformation u is imposed in the direction 
parallel to the vertical cell walls of double thickness (figure 4). The bottom surface nodes are 
prohibited to move in the direction of the imposed deformation. ABAQUS/Standard has been 
used for the calculation. The sum of the reaction forces in the bottom surface nodes, in the 
considered direction, is divided by the bottom surface area, giving the needed out-of-plane 
shear stress. The maximum of the calculated stress-displacement curve (figure 4) gives the 
shear strength. 

Periodic boundary conditions are used to represent the unit cell as a small part of an 
infinite plate (figure 5). A derivation of the equations expressing periodicity between 
corresponding degrees of freedom can be found in [8]. 

With the determined core shear strength of 0.8MPa, the minimal allowed tool radius is 
77mm according to equations (5) and (1). In the next sections this tool radius is used to 
perform deepdrawing FE-analyses. 

Figure 4: FE-calculation of the out-of-plane honeycomb core shear 
strength

Figure 5: Equation stating periodic 
boundary conditions between degrees of 

freedom of corresponding nodes of 
boundaries Γ+ en Γ-
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3 FORMING SIMULATIONS ON FULL 3D SANDWICH MODELS 

3.1 Deepdrawing simulation with bending in one direction 

The deepdrawing process that is modelled is presented in figure 6 (see figure 2: 
D=175mm, P=155mm and R=77mm). The sandwich unit cell defined in figure 1 is used to 
build up the whole sandwich plate. 26 unit cells (52 hexagonal cells) are used in the bending 
direction, giving the plate a total length of 293mm. There is only one cell in the width of the 
model. Periodic boundary conditions are used in this direction, representing the sandwich 
plate as infinite in this direction. Symmetry conditions are exploited. The model contains 
324840 degrees of freedom. ABAQUS/Standard is used for the analysis. The CPU-time 
needed for this calculation is about 8 hours on a 4 GB RAM processor. 

The circles in figure 6 indicate the areas with the highest shear stresses (red and blue 
indicate equal shear stresses of opposite signs). They appear in the walls of the core. 
Macroscopically this gives rise to out-of-plane shear stress. Shear stress area A is due to the 
reaction forces with blank holder and die, consistent with the considerations made in the 
equivalent mechanical system of figure 3(a). The shear stress in area B is a consequence of 
the reaction forces due to contact between the blank and the forming tools. Figure 7 shows a 
zoom of this area at a moment of time when the deepdrawing depth is half the maximum 
value. The drawn contact forces F explain the presence of high out-of-plane shear stresses in 
the core. 

Figure 6: Sandwich forming process with bending in one direction. The contour plot shows the shear stress 
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Figure 7: Zoom on area B of figure 6 halfway the sandwich forming process. Contact between the blank and the 
forming tools introduces shear stresses in the core

3.2 Deepdrawing simulation with bending in two directions 

For the simulation of this process the sandwich plate is built using the unit cell of figure 1 
in a pattern of 6 by 10 (120 hexagonal cells), giving a plate of 67mm by 67mm. The model 
contains 705894 degrees of freedom. Symmetry conditions are exploited. 

Figure 8 presents the forming configuration for this case together with the shear stresses of 
the formed sandwich part. In comparison with the forming process with bending in one 
direction, only a smaller magnitude of deformation is feasible for the simulation, due to a 
combination of model size limits and a tool radius R of 77m. Figure 9 shows the formed 
sandwich part in 3D together with the shear stresses. The simulation is conducted with 
ABAQUS/Standard and takes 12 hours of CPU-time on a 4 GB RAM processor. 

Figure 8: Sandwich forming process with bending in two directions. The contour plot shows the shear stress 
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Figure 9: Formed sandwich part with bending in two directions. The contour plot shows the shear stress. The 
areas with the highest shear stresses are indicated

Shear stresses in the core walls are still dominant. However, in a plane at an angle of 45° 
with the symmetry planes, high in-plane shear stresses in the face sheets can be distinguished 
(indicated with the black line in figure 9). In figure 10 a unit cell is singled out from this area. 
The combination of bending in two directions deforms the unit cell in the indicated direction 
(45°-direction), leading to shear stress in the principal directions in the face sheets. High 
bending and shear stresses give rise to a wrinkling phenomenon in the face sheets. 

Figure 10: Deformation mechanism of a honeycomb unit cell subjected to bending in two directions. The 
corresponding stress condition in the face sheets is symbolically presented 

4 CONCLUSIONS 

It is feasible to predict the deformation of a sandwich panel, yet with a very high 
computation time. 

The out-of-plane shear behaviour is proven to be important in forming sandwich 
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components. It plays a key factor in an important forming failure: core thickness reduction. 
The simulations are carried out on small sandwich panels (approximately 100 hexagonal 
cells), yet the models contain up to 700.000 degrees of freedom, leading to 12 hours of CPU 
time on a 4Gb RAM processor. 

Further research will focus on the development of equivalent models that allow for a 
shorter analysis time. 
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